Merge pull request #7 from slashtechno/improve-argparse-organization
Improve argparse organization
This commit is contained in:
commit
8026fd88f2
|
@ -1,17 +1,14 @@
|
|||
# import face_recognition
|
||||
import cv2
|
||||
import dotenv
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
import cv2
|
||||
|
||||
# import hjson as json
|
||||
import torch
|
||||
from ultralytics import YOLO
|
||||
|
||||
import argparse
|
||||
|
||||
from .utils import notify
|
||||
from .utils import utils
|
||||
from .utils import notify, utils
|
||||
from .utils.cli_args import argparser
|
||||
|
||||
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
||||
args = None
|
||||
|
@ -27,137 +24,6 @@ def main():
|
|||
global args
|
||||
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
|
||||
|
||||
if Path(".env").is_file():
|
||||
dotenv.load_dotenv()
|
||||
print("Loaded .env file")
|
||||
else:
|
||||
print("No .env file found")
|
||||
|
||||
# TODO: If possible, move the argparse stuff to a separate file
|
||||
# It's taking up too many lines in this file
|
||||
argparser = argparse.ArgumentParser(
|
||||
prog="Wyzely Detect",
|
||||
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
|
||||
epilog=":)",
|
||||
)
|
||||
|
||||
# required='RUN_SCALE' not in os.environ,
|
||||
|
||||
argparser.add_argument(
|
||||
"--run-scale",
|
||||
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
|
||||
default=os.environ["RUN_SCALE"]
|
||||
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
|
||||
# else 0.25,
|
||||
else 1,
|
||||
type=float,
|
||||
help="The scale to run the detection at, default is 0.25",
|
||||
)
|
||||
argparser.add_argument(
|
||||
"--view-scale",
|
||||
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
|
||||
default=os.environ["VIEW_SCALE"]
|
||||
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
|
||||
# else 0.75,
|
||||
else 1,
|
||||
type=float,
|
||||
help="The scale to view the detection at, default is 0.75",
|
||||
)
|
||||
|
||||
argparser.add_argument(
|
||||
"--no-display",
|
||||
default=os.environ["NO_DISPLAY"]
|
||||
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
|
||||
else False,
|
||||
action="store_true",
|
||||
help="Don't display the video feed",
|
||||
)
|
||||
|
||||
argparser.add_argument(
|
||||
"--confidence-threshold",
|
||||
default=os.environ["CONFIDENCE_THRESHOLD"]
|
||||
if "CONFIDENCE_THRESHOLD" in os.environ
|
||||
and os.environ["CONFIDENCE_THRESHOLD"] != ""
|
||||
else 0.6,
|
||||
type=float,
|
||||
help="The confidence threshold to use",
|
||||
)
|
||||
|
||||
argparser.add_argument(
|
||||
"--faces-directory",
|
||||
default=os.environ["FACES_DIRECTORY"]
|
||||
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
|
||||
else "faces",
|
||||
type=str,
|
||||
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
|
||||
)
|
||||
argparser.add_argument(
|
||||
"--detect-object",
|
||||
nargs="*",
|
||||
default=[],
|
||||
type=str,
|
||||
help="The object(s) to detect. Must be something the model is trained to detect",
|
||||
)
|
||||
|
||||
stream_source = argparser.add_mutually_exclusive_group()
|
||||
stream_source.add_argument(
|
||||
"--url",
|
||||
default=os.environ["URL"]
|
||||
if "URL" in os.environ and os.environ["URL"] != ""
|
||||
else None, # noqa: E501
|
||||
type=str,
|
||||
help="The URL of the stream to use",
|
||||
)
|
||||
stream_source.add_argument(
|
||||
"--capture-device",
|
||||
default=os.environ["CAPTURE_DEVICE"]
|
||||
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
|
||||
else 0, # noqa: E501
|
||||
type=int,
|
||||
help="The capture device to use. Can also be a url.",
|
||||
)
|
||||
|
||||
# Defaults for the stuff here and down are already set in notify.py.
|
||||
# Setting them here just means that argparse will display the default values as defualt
|
||||
# TODO: Perhaps just remove the default parameter and just add to the help message that the default is set is x
|
||||
# TODO: Make ntfy optional in ntfy.py. Currently, unless there is a local or LAN instance of ntfy, this can't run offline
|
||||
notifcation_services = argparser.add_argument_group("Notification Services")
|
||||
notifcation_services.add_argument(
|
||||
"--ntfy-url",
|
||||
default=os.environ["NTFY_URL"]
|
||||
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
|
||||
else "https://ntfy.sh/wyzely-detect",
|
||||
type=str,
|
||||
help="The URL to send notifications to",
|
||||
)
|
||||
|
||||
timers = argparser.add_argument_group("Timers")
|
||||
timers.add_argument(
|
||||
"--detection-duration",
|
||||
default=os.environ["DETECTION_DURATION"]
|
||||
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
|
||||
else 2,
|
||||
type=int,
|
||||
help="The duration (in seconds) that an object must be detected for before sending a notification",
|
||||
)
|
||||
timers.add_argument(
|
||||
"--detection-window",
|
||||
default=os.environ["DETECTION_WINDOW"]
|
||||
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
|
||||
else 15,
|
||||
type=int,
|
||||
help="The time (seconds) before the detection duration resets",
|
||||
)
|
||||
timers.add_argument(
|
||||
"--notification-window",
|
||||
default=os.environ["NOTIFICATION_WINDOW"]
|
||||
if "NOTIFICATION_WINDOW" in os.environ
|
||||
and os.environ["NOTIFICATION_WINDOW"] != ""
|
||||
else 30,
|
||||
type=int,
|
||||
help="The time (seconds) before another notification can be sent",
|
||||
)
|
||||
|
||||
args = argparser.parse_args()
|
||||
|
||||
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
|
||||
|
@ -175,8 +41,8 @@ def main():
|
|||
|
||||
# Depending on if the user wants to use a stream or a capture device,
|
||||
# Set the video capture to the appropriate source
|
||||
if args.url:
|
||||
video_capture = cv2.VideoCapture(args.url)
|
||||
if args.rtsp_url is not None:
|
||||
video_capture = cv2.VideoCapture(args.rtsp_url)
|
||||
else:
|
||||
video_capture = cv2.VideoCapture(args.capture_device)
|
||||
|
||||
|
@ -216,7 +82,10 @@ def main():
|
|||
# May be better to check every iteration, but this also works
|
||||
if path_to_faces_exists:
|
||||
if face_details := utils.recognize_face(
|
||||
path_to_directory=path_to_faces, run_frame=run_frame
|
||||
path_to_directory=path_to_faces,
|
||||
run_frame=run_frame,
|
||||
min_confidence=args.face_confidence_threshold,
|
||||
no_remove_representations=args.no_remove_representations,
|
||||
):
|
||||
plot_boxes.append(face_details)
|
||||
objects_and_peoples = notify.thing_detected(
|
||||
|
@ -265,7 +134,7 @@ def main():
|
|||
# print("---")
|
||||
|
||||
# Now do stuff (if conf > 0.5)
|
||||
if conf < args.confidence_threshold or (
|
||||
if conf < args.object_confidence_threshold or (
|
||||
class_id not in args.detect_object and args.detect_object != []
|
||||
):
|
||||
# If the confidence is too low
|
||||
|
|
|
@ -0,0 +1,167 @@
|
|||
import argparse
|
||||
import os
|
||||
import dotenv
|
||||
from pathlib import Path
|
||||
|
||||
argparser = None
|
||||
|
||||
|
||||
def set_argparse():
|
||||
global argparser
|
||||
|
||||
if Path(".env").is_file():
|
||||
dotenv.load_dotenv()
|
||||
print("Loaded .env file")
|
||||
else:
|
||||
print("No .env file found")
|
||||
|
||||
|
||||
# One important thing to consider is that most function parameters are optional and have a default value
|
||||
# However, with argparse, those are never used since a argparse always passes something, even if it's None
|
||||
argparser = argparse.ArgumentParser(
|
||||
prog="Wyzely Detect",
|
||||
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
|
||||
epilog=":)",
|
||||
)
|
||||
|
||||
|
||||
video_options = argparser.add_argument_group("Video Options")
|
||||
stream_source = video_options.add_mutually_exclusive_group()
|
||||
stream_source.add_argument(
|
||||
"--rtsp-url",
|
||||
default=os.environ["RTSP_URL"]
|
||||
if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != ""
|
||||
else None, # noqa: E501
|
||||
type=str,
|
||||
help="RTSP camera URL",
|
||||
)
|
||||
stream_source.add_argument(
|
||||
"--capture-device",
|
||||
default=os.environ["CAPTURE_DEVICE"]
|
||||
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
|
||||
else 0, # noqa: E501
|
||||
type=int,
|
||||
help="Capture device number",
|
||||
)
|
||||
video_options.add_argument(
|
||||
"--run-scale",
|
||||
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
|
||||
default=os.environ["RUN_SCALE"]
|
||||
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
|
||||
# else 0.25,
|
||||
else 1,
|
||||
type=float,
|
||||
help="The scale to run the detection at, default is 0.25",
|
||||
)
|
||||
video_options.add_argument(
|
||||
"--view-scale",
|
||||
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
|
||||
default=os.environ["VIEW_SCALE"]
|
||||
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
|
||||
# else 0.75,
|
||||
else 1,
|
||||
type=float,
|
||||
help="The scale to view the detection at, default is 0.75",
|
||||
)
|
||||
|
||||
video_options.add_argument(
|
||||
"--no-display",
|
||||
default=os.environ["NO_DISPLAY"]
|
||||
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
|
||||
else False,
|
||||
action="store_true",
|
||||
help="Don't display the video feed",
|
||||
)
|
||||
|
||||
|
||||
notifcation_services = argparser.add_argument_group("Notification Services")
|
||||
notifcation_services.add_argument(
|
||||
"--ntfy-url",
|
||||
default=os.environ["NTFY_URL"]
|
||||
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
|
||||
else None,
|
||||
type=str,
|
||||
help="The URL to send notifications to",
|
||||
)
|
||||
|
||||
timers = argparser.add_argument_group("Timers")
|
||||
timers.add_argument(
|
||||
"--detection-duration",
|
||||
default=os.environ["DETECTION_DURATION"]
|
||||
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
|
||||
else 2,
|
||||
type=int,
|
||||
help="The duration (in seconds) that an object must be detected for before sending a notification",
|
||||
)
|
||||
timers.add_argument(
|
||||
"--detection-window",
|
||||
default=os.environ["DETECTION_WINDOW"]
|
||||
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
|
||||
else 15,
|
||||
type=int,
|
||||
help="The time (seconds) before the detection duration resets",
|
||||
)
|
||||
timers.add_argument(
|
||||
"--notification-window",
|
||||
default=os.environ["NOTIFICATION_WINDOW"]
|
||||
if "NOTIFICATION_WINDOW" in os.environ
|
||||
and os.environ["NOTIFICATION_WINDOW"] != ""
|
||||
else 30,
|
||||
type=int,
|
||||
help="The time (seconds) before another notification can be sent",
|
||||
)
|
||||
|
||||
|
||||
face_recognition = argparser.add_argument_group("Face Recognition options")
|
||||
face_recognition.add_argument(
|
||||
"--faces-directory",
|
||||
default=os.environ["FACES_DIRECTORY"]
|
||||
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
|
||||
else "faces",
|
||||
type=str,
|
||||
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
|
||||
)
|
||||
face_recognition.add_argument(
|
||||
"--face-confidence-threshold",
|
||||
default=os.environ["FACE_CONFIDENCE_THRESHOLD"]
|
||||
if "FACE_CONFIDENCE_THRESHOLD" in os.environ
|
||||
and os.environ["FACE_CONFIDENCE_THRESHOLD"] != ""
|
||||
else 0.3,
|
||||
type=float,
|
||||
help="The confidence (currently cosine similarity) threshold to use for face recognition",
|
||||
)
|
||||
face_recognition.add_argument(
|
||||
"--no-remove-representations",
|
||||
default=os.environ["NO_REMOVE_REPRESENTATIONS"]
|
||||
if "NO_REMOVE_REPRESENTATIONS" in os.environ
|
||||
and os.environ["NO_REMOVE_REPRESENTATIONS"] != ""
|
||||
else False,
|
||||
action="store_true",
|
||||
help="Don't remove representations_<model>.pkl at the start of the program. Greatly improves startup time, but doesn't take into account changes to the faces directory since it was created", # noqa: E501
|
||||
)
|
||||
|
||||
|
||||
|
||||
object_detection = argparser.add_argument_group("Object Detection options")
|
||||
object_detection.add_argument(
|
||||
"--detect-object",
|
||||
nargs="*",
|
||||
default=[],
|
||||
type=str,
|
||||
help="The object(s) to detect. Must be something the model is trained to detect",
|
||||
)
|
||||
object_detection.add_argument(
|
||||
"--object-confidence-threshold",
|
||||
default=os.environ["OBJECT_CONFIDENCE_THRESHOLD"]
|
||||
if "OBJECT_CONFIDENCE_THRESHOLD" in os.environ
|
||||
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"] != ""
|
||||
else 0.6,
|
||||
type=float,
|
||||
help="The confidence threshold to use",
|
||||
)
|
||||
|
||||
# return argparser
|
||||
|
||||
|
||||
# This will run when this file is imported
|
||||
set_argparse()
|
|
@ -104,18 +104,23 @@ def thing_detected(
|
|||
):
|
||||
respective_type[thing_name]["last_notification_time"] = time.time()
|
||||
print(f"Detected {thing_name} for {detection_duration} seconds")
|
||||
headers = construct_ntfy_headers(
|
||||
title=f"{thing_name} detected",
|
||||
tag="rotating_light",
|
||||
priority="default",
|
||||
)
|
||||
send_notification(
|
||||
data=f"{thing_name} detected for {detection_duration} seconds",
|
||||
headers=headers,
|
||||
url=ntfy_url,
|
||||
)
|
||||
# Reset the detection duration
|
||||
print("Just sent a notification - resetting detection duration")
|
||||
if ntfy_url is None:
|
||||
print(
|
||||
"ntfy_url is None. Not sending notification. Set ntfy_url to send notifications"
|
||||
)
|
||||
else:
|
||||
headers = construct_ntfy_headers(
|
||||
title=f"{thing_name} detected",
|
||||
tag="rotating_light",
|
||||
priority="default",
|
||||
)
|
||||
send_notification(
|
||||
data=f"{thing_name} detected for {detection_duration} seconds",
|
||||
headers=headers,
|
||||
url=ntfy_url,
|
||||
)
|
||||
# Reset the detection duration
|
||||
print("Just sent a notification - resetting detection duration")
|
||||
respective_type[thing_name]["detection_duration"] = 0
|
||||
|
||||
# Take the aliased objects_and_peoples and update the respective dictionary
|
||||
|
|
|
@ -68,6 +68,8 @@ def recognize_face(
|
|||
path_to_directory: Path = Path("faces"),
|
||||
# opencv image
|
||||
run_frame: np.ndarray = None,
|
||||
min_confidence: float = 0.3,
|
||||
no_remove_representations: bool = False,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Accepts a path to a directory of images of faces to be used as a refference
|
||||
|
@ -94,13 +96,16 @@ def recognize_face(
|
|||
global first_face_try
|
||||
|
||||
# If it's the first time the function is being run, remove representations_arcface.pkl, if it exists
|
||||
if first_face_try:
|
||||
if first_face_try and not no_remove_representations:
|
||||
try:
|
||||
path_to_directory.joinpath("representations_arcface.pkl").unlink()
|
||||
print("Removing representations_arcface.pkl")
|
||||
except FileNotFoundError:
|
||||
print("representations_arcface.pkl does not exist")
|
||||
first_face_try = False
|
||||
elif first_face_try and no_remove_representations:
|
||||
print("Not attempting to remove representations_arcface.pkl")
|
||||
first_face_try = False
|
||||
|
||||
# face_dataframes is a vanilla list of dataframes
|
||||
# It seems face_dataframes is empty if the face database (directory) doesn't exist. Seems to work if it's empty though
|
||||
|
@ -134,7 +139,7 @@ def recognize_face(
|
|||
# So we can just grab the path from there
|
||||
# iloc = Integer LOCation
|
||||
path_to_image = Path(df.iloc[-1]["identity"])
|
||||
# If the parent name is the same as the path to the database, then set label to the image name instead of the parent directory name
|
||||
# If the parent name is the same as the path to the database, then set label to the image name instead of the parent name
|
||||
if path_to_image.parent == Path(path_to_directory):
|
||||
label = path_to_image.name
|
||||
else:
|
||||
|
@ -149,15 +154,13 @@ def recognize_face(
|
|||
"y2": df.iloc[-1]["source_y"] + df.iloc[-1]["source_h"],
|
||||
}
|
||||
# After some brief testing, it seems positive matches are > 0.3
|
||||
distance = df.iloc[-1]["ArcFace_cosine"]
|
||||
# TODO: Make this a CLI argument
|
||||
if distance < 0.3:
|
||||
cosine_similarity = df.iloc[-1]["ArcFace_cosine"]
|
||||
if cosine_similarity < min_confidence:
|
||||
return None
|
||||
# if 0.5 < distance < 0.7:
|
||||
# label = "Unknown"
|
||||
to_return = dict(label=label, **coordinates)
|
||||
print(
|
||||
f"Confindence: {distance}, filname: {path_to_image.name}, to_return: {to_return}"
|
||||
f"Cosine similarity: {cosine_similarity}, filname: {path_to_image.name}, to_return: {to_return}"
|
||||
)
|
||||
return to_return
|
||||
|
||||
|
|
Loading…
Reference in New Issue