Merge pull request #6 from slashtechno/publish-to-pypi

Prepare to publish to PyPi
This commit is contained in:
slashtechno 2023-10-22 16:57:45 -05:00 committed by GitHub
commit 3235bb61bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 440 additions and 295 deletions

39
.github/workflows/python-publish.yml vendored Normal file
View File

@ -0,0 +1,39 @@
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: Upload Python Package
on:
release:
types: [published]
permissions:
contents: read
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@v1.8.10
with:
user: __token__
password: ${{ secrets.PYPI_PROJECT_API_TOKEN }}

6
.gitignore vendored
View File

@ -2,7 +2,9 @@
config/
using_yolov8.ipynb
yolov8n.pt
.venv/
*venv/
__pycache__/
faces/*
!faces/.gitkeep
!faces/.gitkeep
dist/
test.txt

8
.vscode/launch.json vendored
View File

@ -5,11 +5,13 @@
"version": "0.2.0",
"configurations": [
{
"name": "Python: Module",
// "name": "Python: Module",
"name": "Debug Wyzely Detect",
"type": "python",
"request": "launch",
"module": "set_detect_notify",
"justMyCode": true
"module": "wyzely_detect",
// "justMyCode": true
"justMyCode": false
}
]
}

3
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"files.eol": "\n"
}

View File

@ -9,4 +9,4 @@ COPY . .
RUN poetry install
ENTRYPOINT ["poetry", "run", "python", "-m", "set_detect_notify"]
ENTRYPOINT ["poetry", "run", "python", "-m", "wyzely_detect"]

View File

@ -1,5 +1,5 @@
# Set, Detect, Notify
Recognize faces/objects in (Wyze Cam) footage and send notifications to your phone (or other devices)
# Wyzely Detect
Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices
### Features
- Recognize objects
@ -13,21 +13,22 @@ Recognize faces/objects in (Wyze Cam) footage and send notifications to your pho
## Prerequisites
### Poetry/Python
- Camera, either a webcam or a Wyze Cam
- All RTSP feeds _should_ work, however.
- Python
- Poetry
### Docker
- All RTSP feeds _should_ work, however.
- Python 3.10 or 3.11
- Poetry
### Docker
- A Wyze Cam
- Any other RTSP feed _should_ work, as mentioned above
- Python
- Poetry
- Any other RTSP feed _should_ work, as mentioned above
- Docker
- Docker Compose
## What's not required
- A Wyze subscription
## Usage
## Usage
### Installation
1. Clone this repo with `git clone https://github.com/slashtechno/wyze-face-recognition.git`
1. Clone this repo with `git clone https://github.com/slashtechno/wyzely-detect`
2. `cd` into the cloned repository
3. Then, either install with [Poetry](https://python-poetry.org/) or run with Docker
@ -37,7 +38,7 @@ Recognize faces/objects in (Wyze Cam) footage and send notifications to your pho
#### Poetry
1. `poetry install`
2. `poetry run -- set-detect-notify`
2. `poetry run -- wyzely-detect`
### Configuration
The following are some basic CLI options. Most flags have environment variable equivalents which can be helpful when using Docker.

View File

@ -36,12 +36,12 @@
"# cv2.imwrite(str(uuid_path), frame)\n",
"# dfs = DeepFace.find(img_path=str(uuid_path), db_path = \"faces\")\n",
"# Don't throw an error if no face is detected (enforce_detection=False)\n",
"dfs = DeepFace.find(frame, db_path = \"faces\", enforce_detection=False)\n",
"dfs = DeepFace.find(frame, db_path = \"faces\", enforce_detection=False, silent=False, model_name=\"ArcFace\", detector_backend=\"opencv\")\n",
"# Get the identity of the person\n",
"for i, pd_dataframe in enumerate(dfs):\n",
" # Sort the dataframe by confidence\n",
" # inplace=True means that the dataframe is modified so we don't need to assign it to a new variable\n",
" pd_dataframe.sort_values(by=['VGG-Face_cosine'], inplace=True, ascending=False)\n",
" # pd_dataframe.sort_values(by=['model_name=\"ArcFace\", detector_backend=\"opencv\")'], inplace=True, ascending=False)\n",
" print(f'On dataframe {i}')\n",
" print(pd_dataframe)\n",
" # Get the most likely identity\n",
@ -49,7 +49,7 @@
" # We could use Path to get the parent directory of the image to use as the identity\n",
" print(f'Most likely identity: {Path(pd_dataframe.iloc[0][\"identity\"]).parent.name}')\n",
" # Get the most likely identity's confidence\n",
" print(f'Confidence: {pd_dataframe.iloc[0][\"VGG-Face_cosine\"]}')\n",
" print(f'Confidence: {pd_dataframe.iloc[0][\"ArcFace_cosine\"]}')\n",
"\n",
"# uuid_path.unlink()"
]
@ -67,7 +67,61 @@
"metadata": {},
"outputs": [],
"source": [
"DeepFace.stream(db_path=\"faces\")"
"DeepFace.stream(db_path=\"faces\", model_name=\"ArcFace\", detector_backend=\"opencv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Stream normal frame by frame"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from deepface import DeepFace\n",
"import cv2\n",
"from pathlib import Path\n",
"import uuid\n",
"import pandas as pd\n",
"\n",
"def main():\n",
" cap = cv2.VideoCapture(0)\n",
" while True:\n",
" ret, frame = cap.read()\n",
" dfs = DeepFace.find(frame, db_path = \"faces\", enforce_detection=False, silent=False, model_name=\"ArcFace\", detector_backend=\"opencv\")\n",
" for i, pd_dataframe in enumerate(dfs):\n",
" print(f'On dataframe {i}')\n",
" print(pd_dataframe)\n",
" print(f'Most likely identity: {Path(pd_dataframe.iloc[0][\"identity\"]).parent.name}')\n",
" print(f'Confidence: {pd_dataframe.iloc[0][\"ArcFace_cosine\"]}')\n",
" cv2.imshow(\"frame\", frame)\n",
" if cv2.waitKey(1) & 0xFF == ord(\"q\"):\n",
" break\n",
" cap.release()\n",
" cv2.destroyAllWindows()\n",
" \n",
"\n",
"\n",
"main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Other functions\n"
]
}
],

View File

@ -3,7 +3,7 @@ networks:
all:
services:
bridge:
container_name: bridge-wyze
container_name: bridge-wyzely-detect
restart: unless-stopped
image: mrlt8/wyze-bridge:latest
# I think we can remove the ports, since we're using the network
@ -18,12 +18,9 @@ services:
- WYZE_PASSWORD=${WYZE_PASSWORD} # Replace with wyze password
networks:
all:
# aliases:
# - bridge
# - wyze-bridge
ntfy:
image: binwiederhier/ntfy
container_name: ntfy-wyze
container_name: ntfy-wyzely-detect
command:
- serve
environment:
@ -36,10 +33,10 @@ services:
restart: unless-stopped
networks:
all:
facial_recognition:
container_name: face-recognition-wyze
wyzely-detect:
container_name: wyzely-detect
restart: unless-stopped
# image: ghcr.io/slashtechno/wyze_face_recognition:latest
# image: ghcr.io/slashtechno/wyzely-detect:latest
build:
context: .
dockerfile: Dockerfile
@ -50,7 +47,7 @@ services:
environment:
- URL=rtsp://bridge:8554/cv
- NO_DISPLAY=true
- NTFY_URL=http://ntfy:80/set-detect-notify
- NTFY_URL=http://ntfy:80/wyzely-detect
depends_on:
- bridge

463
poetry.lock generated
View File

@ -124,33 +124,29 @@ lxml = ["lxml"]
[[package]]
name = "black"
version = "23.9.1"
version = "23.10.0"
description = "The uncompromising code formatter."
optional = false
python-versions = ">=3.8"
files = [
{file = "black-23.9.1-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:d6bc09188020c9ac2555a498949401ab35bb6bf76d4e0f8ee251694664df6301"},
{file = "black-23.9.1-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:13ef033794029b85dfea8032c9d3b92b42b526f1ff4bf13b2182ce4e917f5100"},
{file = "black-23.9.1-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:75a2dc41b183d4872d3a500d2b9c9016e67ed95738a3624f4751a0cb4818fe71"},
{file = "black-23.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13a2e4a93bb8ca74a749b6974925c27219bb3df4d42fc45e948a5d9feb5122b7"},
{file = "black-23.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:adc3e4442eef57f99b5590b245a328aad19c99552e0bdc7f0b04db6656debd80"},
{file = "black-23.9.1-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:8431445bf62d2a914b541da7ab3e2b4f3bc052d2ccbf157ebad18ea126efb91f"},
{file = "black-23.9.1-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:8fc1ddcf83f996247505db6b715294eba56ea9372e107fd54963c7553f2b6dfe"},
{file = "black-23.9.1-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:7d30ec46de88091e4316b17ae58bbbfc12b2de05e069030f6b747dfc649ad186"},
{file = "black-23.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:031e8c69f3d3b09e1aa471a926a1eeb0b9071f80b17689a655f7885ac9325a6f"},
{file = "black-23.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:538efb451cd50f43aba394e9ec7ad55a37598faae3348d723b59ea8e91616300"},
{file = "black-23.9.1-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:638619a559280de0c2aa4d76f504891c9860bb8fa214267358f0a20f27c12948"},
{file = "black-23.9.1-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:a732b82747235e0542c03bf352c126052c0fbc458d8a239a94701175b17d4855"},
{file = "black-23.9.1-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:cf3a4d00e4cdb6734b64bf23cd4341421e8953615cba6b3670453737a72ec204"},
{file = "black-23.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf99f3de8b3273a8317681d8194ea222f10e0133a24a7548c73ce44ea1679377"},
{file = "black-23.9.1-cp38-cp38-win_amd64.whl", hash = "sha256:14f04c990259576acd093871e7e9b14918eb28f1866f91968ff5524293f9c573"},
{file = "black-23.9.1-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:c619f063c2d68f19b2d7270f4cf3192cb81c9ec5bc5ba02df91471d0b88c4c5c"},
{file = "black-23.9.1-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:6a3b50e4b93f43b34a9d3ef00d9b6728b4a722c997c99ab09102fd5efdb88325"},
{file = "black-23.9.1-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:c46767e8df1b7beefb0899c4a95fb43058fa8500b6db144f4ff3ca38eb2f6393"},
{file = "black-23.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50254ebfa56aa46a9fdd5d651f9637485068a1adf42270148cd101cdf56e0ad9"},
{file = "black-23.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:403397c033adbc45c2bd41747da1f7fc7eaa44efbee256b53842470d4ac5a70f"},
{file = "black-23.9.1-py3-none-any.whl", hash = "sha256:6ccd59584cc834b6d127628713e4b6b968e5f79572da66284532525a042549f9"},
{file = "black-23.9.1.tar.gz", hash = "sha256:24b6b3ff5c6d9ea08a8888f6977eae858e1f340d7260cf56d70a49823236b62d"},
{file = "black-23.10.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:f8dc7d50d94063cdfd13c82368afd8588bac4ce360e4224ac399e769d6704e98"},
{file = "black-23.10.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:f20ff03f3fdd2fd4460b4f631663813e57dc277e37fb216463f3b907aa5a9bdd"},
{file = "black-23.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3d9129ce05b0829730323bdcb00f928a448a124af5acf90aa94d9aba6969604"},
{file = "black-23.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:960c21555be135c4b37b7018d63d6248bdae8514e5c55b71e994ad37407f45b8"},
{file = "black-23.10.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:30b78ac9b54cf87bcb9910ee3d499d2bc893afd52495066c49d9ee6b21eee06e"},
{file = "black-23.10.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:0e232f24a337fed7a82c1185ae46c56c4a6167fb0fe37411b43e876892c76699"},
{file = "black-23.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31946ec6f9c54ed7ba431c38bc81d758970dd734b96b8e8c2b17a367d7908171"},
{file = "black-23.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:c870bee76ad5f7a5ea7bd01dc646028d05568d33b0b09b7ecfc8ec0da3f3f39c"},
{file = "black-23.10.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:6901631b937acbee93c75537e74f69463adaf34379a04eef32425b88aca88a23"},
{file = "black-23.10.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:481167c60cd3e6b1cb8ef2aac0f76165843a374346aeeaa9d86765fe0dd0318b"},
{file = "black-23.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f74892b4b836e5162aa0452393112a574dac85e13902c57dfbaaf388e4eda37c"},
{file = "black-23.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:47c4510f70ec2e8f9135ba490811c071419c115e46f143e4dce2ac45afdcf4c9"},
{file = "black-23.10.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:76baba9281e5e5b230c9b7f83a96daf67a95e919c2dfc240d9e6295eab7b9204"},
{file = "black-23.10.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:a3c2ddb35f71976a4cfeca558848c2f2f89abc86b06e8dd89b5a65c1e6c0f22a"},
{file = "black-23.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db451a3363b1e765c172c3fd86213a4ce63fb8524c938ebd82919bf2a6e28c6a"},
{file = "black-23.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:7fb5fc36bb65160df21498d5a3dd330af8b6401be3f25af60c6ebfe23753f747"},
{file = "black-23.10.0-py3-none-any.whl", hash = "sha256:e223b731a0e025f8ef427dd79d8cd69c167da807f5710add30cdf131f13dd62e"},
{file = "black-23.10.0.tar.gz", hash = "sha256:31b9f87b277a68d0e99d2905edae08807c007973eaa609da5f0c62def6b7c0bd"},
]
[package.dependencies]
@ -528,13 +524,13 @@ test-no-images = ["pytest", "pytest-cov", "wurlitzer"]
[[package]]
name = "cycler"
version = "0.12.0"
version = "0.12.1"
description = "Composable style cycles"
optional = false
python-versions = ">=3.8"
files = [
{file = "cycler-0.12.0-py3-none-any.whl", hash = "sha256:7896994252d006771357777d0251f3e34d266f4fa5f2c572247a80ab01440947"},
{file = "cycler-0.12.0.tar.gz", hash = "sha256:8cc3a7b4861f91b1095157f9916f748549a617046e67eb7619abed9b34d2c94a"},
{file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
{file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
]
[package.extras]
@ -723,53 +719,53 @@ files = [
[[package]]
name = "fonttools"
version = "4.43.0"
version = "4.43.1"
description = "Tools to manipulate font files"
optional = false
python-versions = ">=3.8"
files = [
{file = "fonttools-4.43.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ab80e7d6bb01316d5fc8161a2660ca2e9e597d0880db4927bc866c76474472ef"},
{file = "fonttools-4.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82d8e687a42799df5325e7ee12977b74738f34bf7fde1c296f8140efd699a213"},
{file = "fonttools-4.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d08a694b280d615460563a6b4e2afb0b1b9df708c799ec212bf966652b94fc84"},
{file = "fonttools-4.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d654d3e780e0ceabb1f4eff5a3c042c67d4428d0fe1ea3afd238a721cf171b3"},
{file = "fonttools-4.43.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:20fc43783c432862071fa76da6fa714902ae587bc68441e12ff4099b94b1fcef"},
{file = "fonttools-4.43.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:33c40a657fb87ff83185828c0323032d63a4df1279d5c1c38e21f3ec56327803"},
{file = "fonttools-4.43.0-cp310-cp310-win32.whl", hash = "sha256:b3813f57f85bbc0e4011a0e1e9211f9ee52f87f402e41dc05bc5135f03fa51c1"},
{file = "fonttools-4.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:05056a8c9af048381fdb17e89b17d45f6c8394176d01e8c6fef5ac96ea950d38"},
{file = "fonttools-4.43.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da78f39b601ed0b4262929403186d65cf7a016f91ff349ab18fdc5a7080af465"},
{file = "fonttools-4.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5056f69a18f3f28ab5283202d1efcfe011585d31de09d8560f91c6c88f041e92"},
{file = "fonttools-4.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcc01cea0a121fb0c009993497bad93cae25e77db7dee5345fec9cce1aaa09cd"},
{file = "fonttools-4.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee728d5af70f117581712966a21e2e07031e92c687ef1fdc457ac8d281016f64"},
{file = "fonttools-4.43.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b5e760198f0b87e42478bb35a6eae385c636208f6f0d413e100b9c9c5efafb6a"},
{file = "fonttools-4.43.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:af38f5145258e9866da5881580507e6d17ff7756beef175d13213a43a84244e9"},
{file = "fonttools-4.43.0-cp311-cp311-win32.whl", hash = "sha256:25620b738d4533cfc21fd2a4f4b667e481f7cb60e86b609799f7d98af657854e"},
{file = "fonttools-4.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:635658464dccff6fa5c3b43fe8f818ae2c386ee6a9e1abc27359d1e255528186"},
{file = "fonttools-4.43.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a682fb5cbf8837d1822b80acc0be5ff2ea0c49ca836e468a21ffd388ef280fd3"},
{file = "fonttools-4.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3d7adfa342e6b3a2b36960981f23f480969f833d565a4eba259c2e6f59d2674f"},
{file = "fonttools-4.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5aa67d1e720fdd902fde4a59d0880854ae9f19fc958f3e1538bceb36f7f4dc92"},
{file = "fonttools-4.43.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77e5113233a2df07af9dbf493468ce526784c3b179c0e8b9c7838ced37c98b69"},
{file = "fonttools-4.43.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:57c22e5f9f53630d458830f710424dce4f43c5f0d95cb3368c0f5178541e4db7"},
{file = "fonttools-4.43.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:206808f9717c9b19117f461246372a2c160fa12b9b8dbdfb904ab50ca235ba0a"},
{file = "fonttools-4.43.0-cp312-cp312-win32.whl", hash = "sha256:f19c2b1c65d57cbea25cabb80941fea3fbf2625ff0cdcae8900b5fb1c145704f"},
{file = "fonttools-4.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7c76f32051159f8284f1a5f5b605152b5a530736fb8b55b09957db38dcae5348"},
{file = "fonttools-4.43.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e3f8acc6ef4a627394021246e099faee4b343afd3ffe2e517d8195b4ebf20289"},
{file = "fonttools-4.43.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a68b71adc3b3a90346e4ac92f0a69ab9caeba391f3b04ab6f1e98f2c8ebe88e3"},
{file = "fonttools-4.43.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ace0fd5afb79849f599f76af5c6aa5e865bd042c811e4e047bbaa7752cc26126"},
{file = "fonttools-4.43.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f9660e70a2430780e23830476332bc3391c3c8694769e2c0032a5038702a662"},
{file = "fonttools-4.43.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:48078357984214ccd22d7fe0340cd6ff7286b2f74f173603a1a9a40b5dc25afe"},
{file = "fonttools-4.43.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d27d960e10cf7617d70cf3104c32a69b008dde56f2d55a9bed4ba6e3df611544"},
{file = "fonttools-4.43.0-cp38-cp38-win32.whl", hash = "sha256:a6a2e99bb9ea51e0974bbe71768df42c6dd189308c22f3f00560c3341b345646"},
{file = "fonttools-4.43.0-cp38-cp38-win_amd64.whl", hash = "sha256:030355fbb0cea59cf75d076d04d3852900583d1258574ff2d7d719abf4513836"},
{file = "fonttools-4.43.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:52e77f23a9c059f8be01a07300ba4c4d23dc271d33eed502aea5a01ab5d2f4c1"},
{file = "fonttools-4.43.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6a530fa28c155538d32214eafa0964989098a662bd63e91e790e6a7a4e9c02da"},
{file = "fonttools-4.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70f021a6b9eb10dfe7a411b78e63a503a06955dd6d2a4e130906d8760474f77c"},
{file = "fonttools-4.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:812142a0e53cc853964d487e6b40963df62f522b1b571e19d1ff8467d7880ceb"},
{file = "fonttools-4.43.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ace51902ab67ef5fe225e8b361039e996db153e467e24a28d35f74849b37b7ce"},
{file = "fonttools-4.43.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8dfd8edfce34ad135bd69de20c77449c06e2c92b38f2a8358d0987737f82b49e"},
{file = "fonttools-4.43.0-cp39-cp39-win32.whl", hash = "sha256:e5d53eddaf436fa131042f44a76ea1ead0a17c354ab9de0d80e818f0cb1629f1"},
{file = "fonttools-4.43.0-cp39-cp39-win_amd64.whl", hash = "sha256:93c5b6d77baf28f306bc13fa987b0b13edca6a39dc2324eaca299a74ccc6316f"},
{file = "fonttools-4.43.0-py3-none-any.whl", hash = "sha256:e4bc589d8da09267c7c4ceaaaa4fc01a7908ac5b43b286ac9279afe76407c384"},
{file = "fonttools-4.43.0.tar.gz", hash = "sha256:b62a53a4ca83c32c6b78cac64464f88d02929779373c716f738af6968c8c821e"},
{file = "fonttools-4.43.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:bf11e2cca121df35e295bd34b309046c29476ee739753bc6bc9d5050de319273"},
{file = "fonttools-4.43.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10b3922875ffcba636674f406f9ab9a559564fdbaa253d66222019d569db869c"},
{file = "fonttools-4.43.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f727c3e3d08fd25352ed76cc3cb61486f8ed3f46109edf39e5a60fc9fecf6ca"},
{file = "fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad0b3f6342cfa14be996971ea2b28b125ad681c6277c4cd0fbdb50340220dfb6"},
{file = "fonttools-4.43.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3b7ad05b2beeebafb86aa01982e9768d61c2232f16470f9d0d8e385798e37184"},
{file = "fonttools-4.43.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c54466f642d2116686268c3e5f35ebb10e49b0d48d41a847f0e171c785f7ac7"},
{file = "fonttools-4.43.1-cp310-cp310-win32.whl", hash = "sha256:1e09da7e8519e336239fbd375156488a4c4945f11c4c5792ee086dd84f784d02"},
{file = "fonttools-4.43.1-cp310-cp310-win_amd64.whl", hash = "sha256:1cf9e974f63b1080b1d2686180fc1fbfd3bfcfa3e1128695b5de337eb9075cef"},
{file = "fonttools-4.43.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5db46659cfe4e321158de74c6f71617e65dc92e54980086823a207f1c1c0e24b"},
{file = "fonttools-4.43.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1952c89a45caceedf2ab2506d9a95756e12b235c7182a7a0fff4f5e52227204f"},
{file = "fonttools-4.43.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c36da88422e0270fbc7fd959dc9749d31a958506c1d000e16703c2fce43e3d0"},
{file = "fonttools-4.43.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bbbf8174501285049e64d174e29f9578495e1b3b16c07c31910d55ad57683d8"},
{file = "fonttools-4.43.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d4071bd1c183b8d0b368cc9ed3c07a0f6eb1bdfc4941c4c024c49a35429ac7cd"},
{file = "fonttools-4.43.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d21099b411e2006d3c3e1f9aaf339e12037dbf7bf9337faf0e93ec915991f43b"},
{file = "fonttools-4.43.1-cp311-cp311-win32.whl", hash = "sha256:b84a1c00f832feb9d0585ca8432fba104c819e42ff685fcce83537e2e7e91204"},
{file = "fonttools-4.43.1-cp311-cp311-win_amd64.whl", hash = "sha256:9a2f0aa6ca7c9bc1058a9d0b35483d4216e0c1bbe3962bc62ce112749954c7b8"},
{file = "fonttools-4.43.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4d9740e3783c748521e77d3c397dc0662062c88fd93600a3c2087d3d627cd5e5"},
{file = "fonttools-4.43.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:884ef38a5a2fd47b0c1291647b15f4e88b9de5338ffa24ee52c77d52b4dfd09c"},
{file = "fonttools-4.43.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9648518ef687ba818db3fcc5d9aae27a369253ac09a81ed25c3867e8657a0680"},
{file = "fonttools-4.43.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95e974d70238fc2be5f444fa91f6347191d0e914d5d8ae002c9aa189572cc215"},
{file = "fonttools-4.43.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:34f713dad41aa21c637b4e04fe507c36b986a40f7179dcc86402237e2d39dcd3"},
{file = "fonttools-4.43.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:360201d46165fc0753229afe785900bc9596ee6974833124f4e5e9f98d0f592b"},
{file = "fonttools-4.43.1-cp312-cp312-win32.whl", hash = "sha256:bb6d2f8ef81ea076877d76acfb6f9534a9c5f31dc94ba70ad001267ac3a8e56f"},
{file = "fonttools-4.43.1-cp312-cp312-win_amd64.whl", hash = "sha256:25d3da8a01442cbc1106490eddb6d31d7dffb38c1edbfabbcc8db371b3386d72"},
{file = "fonttools-4.43.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8da417431bfc9885a505e86ba706f03f598c85f5a9c54f67d63e84b9948ce590"},
{file = "fonttools-4.43.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:51669b60ee2a4ad6c7fc17539a43ffffc8ef69fd5dbed186a38a79c0ac1f5db7"},
{file = "fonttools-4.43.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:748015d6f28f704e7d95cd3c808b483c5fb87fd3eefe172a9da54746ad56bfb6"},
{file = "fonttools-4.43.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7a58eb5e736d7cf198eee94844b81c9573102ae5989ebcaa1d1a37acd04b33d"},
{file = "fonttools-4.43.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6bb5ea9076e0e39defa2c325fc086593ae582088e91c0746bee7a5a197be3da0"},
{file = "fonttools-4.43.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5f37e31291bf99a63328668bb83b0669f2688f329c4c0d80643acee6e63cd933"},
{file = "fonttools-4.43.1-cp38-cp38-win32.whl", hash = "sha256:9c60ecfa62839f7184f741d0509b5c039d391c3aff71dc5bc57b87cc305cff3b"},
{file = "fonttools-4.43.1-cp38-cp38-win_amd64.whl", hash = "sha256:fe9b1ec799b6086460a7480e0f55c447b1aca0a4eecc53e444f639e967348896"},
{file = "fonttools-4.43.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13a9a185259ed144def3682f74fdcf6596f2294e56fe62dfd2be736674500dba"},
{file = "fonttools-4.43.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2adca1b46d69dce4a37eecc096fe01a65d81a2f5c13b25ad54d5430ae430b13"},
{file = "fonttools-4.43.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18eefac1b247049a3a44bcd6e8c8fd8b97f3cad6f728173b5d81dced12d6c477"},
{file = "fonttools-4.43.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2062542a7565091cea4cc14dd99feff473268b5b8afdee564f7067dd9fff5860"},
{file = "fonttools-4.43.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:18a2477c62a728f4d6e88c45ee9ee0229405e7267d7d79ce1f5ce0f3e9f8ab86"},
{file = "fonttools-4.43.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a7a06f8d95b7496e53af80d974d63516ffb263a468e614978f3899a6df52d4b3"},
{file = "fonttools-4.43.1-cp39-cp39-win32.whl", hash = "sha256:10003ebd81fec0192c889e63a9c8c63f88c7d72ae0460b7ba0cd2a1db246e5ad"},
{file = "fonttools-4.43.1-cp39-cp39-win_amd64.whl", hash = "sha256:e117a92b07407a061cde48158c03587ab97e74e7d73cb65e6aadb17af191162a"},
{file = "fonttools-4.43.1-py3-none-any.whl", hash = "sha256:4f88cae635bfe4bbbdc29d479a297bb525a94889184bb69fa9560c2d4834ddb9"},
{file = "fonttools-4.43.1.tar.gz", hash = "sha256:17dbc2eeafb38d5d0e865dcce16e313c58265a6d2d20081c435f84dc5a9d8212"},
]
[package.extras]
@ -1227,13 +1223,13 @@ referencing = ">=0.28.0"
[[package]]
name = "jupyter-client"
version = "8.3.1"
version = "8.4.0"
description = "Jupyter protocol implementation and client libraries"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_client-8.3.1-py3-none-any.whl", hash = "sha256:5eb9f55eb0650e81de6b7e34308d8b92d04fe4ec41cd8193a913979e33d8e1a5"},
{file = "jupyter_client-8.3.1.tar.gz", hash = "sha256:60294b2d5b869356c893f57b1a877ea6510d60d45cf4b38057f1672d85699ac9"},
{file = "jupyter_client-8.4.0-py3-none-any.whl", hash = "sha256:6a2a950ec23a8f62f9e4c66acec7f0ea6c7d1f80ba0992e747b10c56ce2e6dbe"},
{file = "jupyter_client-8.4.0.tar.gz", hash = "sha256:dc1b857d5d7d76ac101766c6e9b646bf18742721126e72e5d484c75a993cada2"},
]
[package.dependencies]
@ -1249,13 +1245,13 @@ test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pyt
[[package]]
name = "jupyter-core"
version = "5.3.2"
version = "5.4.0"
description = "Jupyter core package. A base package on which Jupyter projects rely."
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_core-5.3.2-py3-none-any.whl", hash = "sha256:a4af53c3fa3f6330cebb0d9f658e148725d15652811d1c32dc0f63bb96f2e6d6"},
{file = "jupyter_core-5.3.2.tar.gz", hash = "sha256:0c28db6cbe2c37b5b398e1a1a5b22f84fd64cd10afc1f6c05b02fb09481ba45f"},
{file = "jupyter_core-5.4.0-py3-none-any.whl", hash = "sha256:66e252f675ac04dcf2feb6ed4afb3cd7f68cf92f483607522dc251f32d471571"},
{file = "jupyter_core-5.4.0.tar.gz", hash = "sha256:e4b98344bb94ee2e3e6c4519a97d001656009f9cb2b7f2baf15b3c205770011d"},
]
[package.dependencies]
@ -1424,12 +1420,12 @@ files = [
[[package]]
name = "lit"
version = "17.0.2"
version = "17.0.3"
description = "A Software Testing Tool"
optional = false
python-versions = "*"
files = [
{file = "lit-17.0.2.tar.gz", hash = "sha256:d6a551eab550f81023c82a260cd484d63970d2be9fd7588111208e7d2ff62212"},
{file = "lit-17.0.3.tar.gz", hash = "sha256:e6049032462be1e2928686cbd4a6cc5b3c545d83ecd078737fe79412c1f3fcc1"},
]
[[package]]
@ -1761,54 +1757,61 @@ files = [
[[package]]
name = "networkx"
version = "3.1"
version = "3.2"
description = "Python package for creating and manipulating graphs and networks"
optional = false
python-versions = ">=3.8"
files = [
{file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"},
{file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"},
]
[package.extras]
default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"]
developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"]
doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"]
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"]
test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"]
[[package]]
name = "numpy"
version = "1.25.2"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3"},
{file = "numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357"},
{file = "numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9"},
{file = "numpy-1.25.2-cp310-cp310-win32.whl", hash = "sha256:7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044"},
{file = "numpy-1.25.2-cp310-cp310-win_amd64.whl", hash = "sha256:834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545"},
{file = "numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418"},
{file = "numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf"},
{file = "numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364"},
{file = "numpy-1.25.2-cp311-cp311-win32.whl", hash = "sha256:5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d"},
{file = "numpy-1.25.2-cp311-cp311-win_amd64.whl", hash = "sha256:5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4"},
{file = "numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3"},
{file = "numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295"},
{file = "numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f"},
{file = "numpy-1.25.2-cp39-cp39-win32.whl", hash = "sha256:2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01"},
{file = "numpy-1.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf"},
{file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
{file = "networkx-3.2-py3-none-any.whl", hash = "sha256:8b25f564bd28f94ac821c58b04ae1a3109e73b001a7d476e4bb0d00d63706bf8"},
{file = "networkx-3.2.tar.gz", hash = "sha256:bda29edf392d9bfa5602034c767d28549214ec45f620081f0b74dc036a1fbbc1"},
]
[package.extras]
default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"]
developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"]
doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"]
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"]
test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"]
[[package]]
name = "numpy"
version = "1.26.1"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = "<3.13,>=3.9"
files = [
{file = "numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af"},
{file = "numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575"},
{file = "numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244"},
{file = "numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67"},
{file = "numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2"},
{file = "numpy-1.26.1-cp310-cp310-win32.whl", hash = "sha256:d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297"},
{file = "numpy-1.26.1-cp310-cp310-win_amd64.whl", hash = "sha256:d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab"},
{file = "numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a"},
{file = "numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9"},
{file = "numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3"},
{file = "numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974"},
{file = "numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c"},
{file = "numpy-1.26.1-cp311-cp311-win32.whl", hash = "sha256:b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b"},
{file = "numpy-1.26.1-cp311-cp311-win_amd64.whl", hash = "sha256:3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53"},
{file = "numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f"},
{file = "numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24"},
{file = "numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e"},
{file = "numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124"},
{file = "numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c"},
{file = "numpy-1.26.1-cp312-cp312-win32.whl", hash = "sha256:af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66"},
{file = "numpy-1.26.1-cp312-cp312-win_amd64.whl", hash = "sha256:9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7"},
{file = "numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e"},
{file = "numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617"},
{file = "numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e"},
{file = "numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908"},
{file = "numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5"},
{file = "numpy-1.26.1-cp39-cp39-win32.whl", hash = "sha256:d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104"},
{file = "numpy-1.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2"},
{file = "numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668"},
{file = "numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42"},
{file = "numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f"},
{file = "numpy-1.26.1.tar.gz", hash = "sha256:c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe"},
]
[[package]]
@ -2171,65 +2174,65 @@ files = [
[[package]]
name = "pillow"
version = "10.0.1"
version = "10.1.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
{file = "Pillow-10.0.1-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:8f06be50669087250f319b706decf69ca71fdecd829091a37cc89398ca4dc17a"},
{file = "Pillow-10.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:50bd5f1ebafe9362ad622072a1d2f5850ecfa44303531ff14353a4059113b12d"},
{file = "Pillow-10.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6a90167bcca1216606223a05e2cf991bb25b14695c518bc65639463d7db722d"},
{file = "Pillow-10.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f11c9102c56ffb9ca87134bd025a43d2aba3f1155f508eff88f694b33a9c6d19"},
{file = "Pillow-10.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:186f7e04248103482ea6354af6d5bcedb62941ee08f7f788a1c7707bc720c66f"},
{file = "Pillow-10.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0462b1496505a3462d0f35dc1c4d7b54069747d65d00ef48e736acda2c8cbdff"},
{file = "Pillow-10.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d889b53ae2f030f756e61a7bff13684dcd77e9af8b10c6048fb2c559d6ed6eaf"},
{file = "Pillow-10.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:552912dbca585b74d75279a7570dd29fa43b6d93594abb494ebb31ac19ace6bd"},
{file = "Pillow-10.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:787bb0169d2385a798888e1122c980c6eff26bf941a8ea79747d35d8f9210ca0"},
{file = "Pillow-10.0.1-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:fd2a5403a75b54661182b75ec6132437a181209b901446ee5724b589af8edef1"},
{file = "Pillow-10.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2d7e91b4379f7a76b31c2dda84ab9e20c6220488e50f7822e59dac36b0cd92b1"},
{file = "Pillow-10.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19e9adb3f22d4c416e7cd79b01375b17159d6990003633ff1d8377e21b7f1b21"},
{file = "Pillow-10.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93139acd8109edcdeffd85e3af8ae7d88b258b3a1e13a038f542b79b6d255c54"},
{file = "Pillow-10.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:92a23b0431941a33242b1f0ce6c88a952e09feeea9af4e8be48236a68ffe2205"},
{file = "Pillow-10.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:cbe68deb8580462ca0d9eb56a81912f59eb4542e1ef8f987405e35a0179f4ea2"},
{file = "Pillow-10.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:522ff4ac3aaf839242c6f4e5b406634bfea002469656ae8358644fc6c4856a3b"},
{file = "Pillow-10.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:84efb46e8d881bb06b35d1d541aa87f574b58e87f781cbba8d200daa835b42e1"},
{file = "Pillow-10.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:898f1d306298ff40dc1b9ca24824f0488f6f039bc0e25cfb549d3195ffa17088"},
{file = "Pillow-10.0.1-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:bcf1207e2f2385a576832af02702de104be71301c2696d0012b1b93fe34aaa5b"},
{file = "Pillow-10.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d6c9049c6274c1bb565021367431ad04481ebb54872edecfcd6088d27edd6ed"},
{file = "Pillow-10.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28444cb6ad49726127d6b340217f0627abc8732f1194fd5352dec5e6a0105635"},
{file = "Pillow-10.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de596695a75496deb3b499c8c4f8e60376e0516e1a774e7bc046f0f48cd620ad"},
{file = "Pillow-10.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:2872f2d7846cf39b3dbff64bc1104cc48c76145854256451d33c5faa55c04d1a"},
{file = "Pillow-10.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:4ce90f8a24e1c15465048959f1e94309dfef93af272633e8f37361b824532e91"},
{file = "Pillow-10.0.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ee7810cf7c83fa227ba9125de6084e5e8b08c59038a7b2c9045ef4dde61663b4"},
{file = "Pillow-10.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b1be1c872b9b5fcc229adeadbeb51422a9633abd847c0ff87dc4ef9bb184ae08"},
{file = "Pillow-10.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:98533fd7fa764e5f85eebe56c8e4094db912ccbe6fbf3a58778d543cadd0db08"},
{file = "Pillow-10.0.1-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:764d2c0daf9c4d40ad12fbc0abd5da3af7f8aa11daf87e4fa1b834000f4b6b0a"},
{file = "Pillow-10.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fcb59711009b0168d6ee0bd8fb5eb259c4ab1717b2f538bbf36bacf207ef7a68"},
{file = "Pillow-10.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:697a06bdcedd473b35e50a7e7506b1d8ceb832dc238a336bd6f4f5aa91a4b500"},
{file = "Pillow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f665d1e6474af9f9da5e86c2a3a2d2d6204e04d5af9c06b9d42afa6ebde3f21"},
{file = "Pillow-10.0.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:2fa6dd2661838c66f1a5473f3b49ab610c98a128fc08afbe81b91a1f0bf8c51d"},
{file = "Pillow-10.0.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:3a04359f308ebee571a3127fdb1bd01f88ba6f6fb6d087f8dd2e0d9bff43f2a7"},
{file = "Pillow-10.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:723bd25051454cea9990203405fa6b74e043ea76d4968166dfd2569b0210886a"},
{file = "Pillow-10.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:71671503e3015da1b50bd18951e2f9daf5b6ffe36d16f1eb2c45711a301521a7"},
{file = "Pillow-10.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:44e7e4587392953e5e251190a964675f61e4dae88d1e6edbe9f36d6243547ff3"},
{file = "Pillow-10.0.1-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:3855447d98cced8670aaa63683808df905e956f00348732448b5a6df67ee5849"},
{file = "Pillow-10.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ed2d9c0704f2dc4fa980b99d565c0c9a543fe5101c25b3d60488b8ba80f0cce1"},
{file = "Pillow-10.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5bb289bb835f9fe1a1e9300d011eef4d69661bb9b34d5e196e5e82c4cb09b37"},
{file = "Pillow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a0d3e54ab1df9df51b914b2233cf779a5a10dfd1ce339d0421748232cea9876"},
{file = "Pillow-10.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:2cc6b86ece42a11f16f55fe8903595eff2b25e0358dec635d0a701ac9586588f"},
{file = "Pillow-10.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ca26ba5767888c84bf5a0c1a32f069e8204ce8c21d00a49c90dabeba00ce0145"},
{file = "Pillow-10.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f0b4b06da13275bc02adfeb82643c4a6385bd08d26f03068c2796f60d125f6f2"},
{file = "Pillow-10.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bc2e3069569ea9dbe88d6b8ea38f439a6aad8f6e7a6283a38edf61ddefb3a9bf"},
{file = "Pillow-10.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:8b451d6ead6e3500b6ce5c7916a43d8d8d25ad74b9102a629baccc0808c54971"},
{file = "Pillow-10.0.1-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:32bec7423cdf25c9038fef614a853c9d25c07590e1a870ed471f47fb80b244db"},
{file = "Pillow-10.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cf63d2c6928b51d35dfdbda6f2c1fddbe51a6bc4a9d4ee6ea0e11670dd981e"},
{file = "Pillow-10.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f6d3d4c905e26354e8f9d82548475c46d8e0889538cb0657aa9c6f0872a37aa4"},
{file = "Pillow-10.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:847e8d1017c741c735d3cd1883fa7b03ded4f825a6e5fcb9378fd813edee995f"},
{file = "Pillow-10.0.1-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:7f771e7219ff04b79e231d099c0a28ed83aa82af91fd5fa9fdb28f5b8d5addaf"},
{file = "Pillow-10.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:459307cacdd4138edee3875bbe22a2492519e060660eaf378ba3b405d1c66317"},
{file = "Pillow-10.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b059ac2c4c7a97daafa7dc850b43b2d3667def858a4f112d1aa082e5c3d6cf7d"},
{file = "Pillow-10.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:d6caf3cd38449ec3cd8a68b375e0c6fe4b6fd04edb6c9766b55ef84a6e8ddf2d"},
{file = "Pillow-10.0.1.tar.gz", hash = "sha256:d72967b06be9300fed5cfbc8b5bafceec48bf7cdc7dab66b1d2549035287191d"},
{file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"},
{file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"},
{file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"},
{file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"},
{file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"},
{file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"},
{file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"},
{file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"},
{file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"},
{file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"},
{file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"},
{file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"},
{file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"},
{file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"},
{file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"},
{file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"},
{file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"},
{file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"},
{file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"},
{file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"},
{file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"},
{file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"},
{file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"},
{file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"},
{file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"},
{file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"},
]
[package.extras]
@ -2289,25 +2292,27 @@ files = [
[[package]]
name = "psutil"
version = "5.9.5"
version = "5.9.6"
description = "Cross-platform lib for process and system monitoring in Python."
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
files = [
{file = "psutil-5.9.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f"},
{file = "psutil-5.9.5-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5"},
{file = "psutil-5.9.5-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4"},
{file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48"},
{file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4"},
{file = "psutil-5.9.5-cp27-none-win32.whl", hash = "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f"},
{file = "psutil-5.9.5-cp27-none-win_amd64.whl", hash = "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42"},
{file = "psutil-5.9.5-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217"},
{file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da"},
{file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4"},
{file = "psutil-5.9.5-cp36-abi3-win32.whl", hash = "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d"},
{file = "psutil-5.9.5-cp36-abi3-win_amd64.whl", hash = "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9"},
{file = "psutil-5.9.5-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30"},
{file = "psutil-5.9.5.tar.gz", hash = "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c"},
{file = "psutil-5.9.6-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:fb8a697f11b0f5994550555fcfe3e69799e5b060c8ecf9e2f75c69302cc35c0d"},
{file = "psutil-5.9.6-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:91ecd2d9c00db9817a4b4192107cf6954addb5d9d67a969a4f436dbc9200f88c"},
{file = "psutil-5.9.6-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:10e8c17b4f898d64b121149afb136c53ea8b68c7531155147867b7b1ac9e7e28"},
{file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:18cd22c5db486f33998f37e2bb054cc62fd06646995285e02a51b1e08da97017"},
{file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:ca2780f5e038379e520281e4c032dddd086906ddff9ef0d1b9dcf00710e5071c"},
{file = "psutil-5.9.6-cp27-none-win32.whl", hash = "sha256:70cb3beb98bc3fd5ac9ac617a327af7e7f826373ee64c80efd4eb2856e5051e9"},
{file = "psutil-5.9.6-cp27-none-win_amd64.whl", hash = "sha256:51dc3d54607c73148f63732c727856f5febec1c7c336f8f41fcbd6315cce76ac"},
{file = "psutil-5.9.6-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c69596f9fc2f8acd574a12d5f8b7b1ba3765a641ea5d60fb4736bf3c08a8214a"},
{file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92e0cc43c524834af53e9d3369245e6cc3b130e78e26100d1f63cdb0abeb3d3c"},
{file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:748c9dd2583ed86347ed65d0035f45fa8c851e8d90354c122ab72319b5f366f4"},
{file = "psutil-5.9.6-cp36-cp36m-win32.whl", hash = "sha256:3ebf2158c16cc69db777e3c7decb3c0f43a7af94a60d72e87b2823aebac3d602"},
{file = "psutil-5.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:ff18b8d1a784b810df0b0fff3bcb50ab941c3b8e2c8de5726f9c71c601c611aa"},
{file = "psutil-5.9.6-cp37-abi3-win32.whl", hash = "sha256:a6f01f03bf1843280f4ad16f4bde26b817847b4c1a0db59bf6419807bc5ce05c"},
{file = "psutil-5.9.6-cp37-abi3-win_amd64.whl", hash = "sha256:6e5fb8dc711a514da83098bc5234264e551ad980cec5f85dabf4d38ed6f15e9a"},
{file = "psutil-5.9.6-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:daecbcbd29b289aac14ece28eca6a3e60aa361754cf6da3dfb20d4d32b6c7f57"},
{file = "psutil-5.9.6.tar.gz", hash = "sha256:e4b92ddcd7dd4cdd3f900180ea1e104932c7bce234fb88976e2a3b296441225a"},
]
[package.extras]
@ -2874,41 +2879,45 @@ files = [
[[package]]
name = "scipy"
version = "1.9.3"
version = "1.11.3"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.8"
python-versions = "<3.13,>=3.9"
files = [
{file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"},
{file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"},
{file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"},
{file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"},
{file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"},
{file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"},
{file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"},
{file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"},
{file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"},
{file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"},
{file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"},
{file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"},
{file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"},
{file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"},
{file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"},
{file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"},
{file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"},
{file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"},
{file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"},
{file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"},
{file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"},
{file = "scipy-1.11.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:370f569c57e1d888304052c18e58f4a927338eafdaef78613c685ca2ea0d1fa0"},
{file = "scipy-1.11.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:9885e3e4f13b2bd44aaf2a1a6390a11add9f48d5295f7a592393ceb8991577a3"},
{file = "scipy-1.11.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e04aa19acc324a1a076abb4035dabe9b64badb19f76ad9c798bde39d41025cdc"},
{file = "scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e1a8a4657673bfae1e05e1e1d6e94b0cabe5ed0c7c144c8aa7b7dbb774ce5c1"},
{file = "scipy-1.11.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7abda0e62ef00cde826d441485e2e32fe737bdddee3324e35c0e01dee65e2a88"},
{file = "scipy-1.11.3-cp310-cp310-win_amd64.whl", hash = "sha256:033c3fd95d55012dd1148b201b72ae854d5086d25e7c316ec9850de4fe776929"},
{file = "scipy-1.11.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:925c6f09d0053b1c0f90b2d92d03b261e889b20d1c9b08a3a51f61afc5f58165"},
{file = "scipy-1.11.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5664e364f90be8219283eeb844323ff8cd79d7acbd64e15eb9c46b9bc7f6a42a"},
{file = "scipy-1.11.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00f325434b6424952fbb636506f0567898dca7b0f7654d48f1c382ea338ce9a3"},
{file = "scipy-1.11.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f290cf561a4b4edfe8d1001ee4be6da60c1c4ea712985b58bf6bc62badee221"},
{file = "scipy-1.11.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:91770cb3b1e81ae19463b3c235bf1e0e330767dca9eb4cd73ba3ded6c4151e4d"},
{file = "scipy-1.11.3-cp311-cp311-win_amd64.whl", hash = "sha256:e1f97cd89c0fe1a0685f8f89d85fa305deb3067d0668151571ba50913e445820"},
{file = "scipy-1.11.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:dfcc1552add7cb7c13fb70efcb2389d0624d571aaf2c80b04117e2755a0c5d15"},
{file = "scipy-1.11.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0d3a136ae1ff0883fffbb1b05b0b2fea251cb1046a5077d0b435a1839b3e52b7"},
{file = "scipy-1.11.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bae66a2d7d5768eaa33008fa5a974389f167183c87bf39160d3fefe6664f8ddc"},
{file = "scipy-1.11.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2f6dee6cbb0e263b8142ed587bc93e3ed5e777f1f75448d24fb923d9fd4dce6"},
{file = "scipy-1.11.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:74e89dc5e00201e71dd94f5f382ab1c6a9f3ff806c7d24e4e90928bb1aafb280"},
{file = "scipy-1.11.3-cp312-cp312-win_amd64.whl", hash = "sha256:90271dbde4be191522b3903fc97334e3956d7cfb9cce3f0718d0ab4fd7d8bfd6"},
{file = "scipy-1.11.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a63d1ec9cadecce838467ce0631c17c15c7197ae61e49429434ba01d618caa83"},
{file = "scipy-1.11.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:5305792c7110e32ff155aed0df46aa60a60fc6e52cd4ee02cdeb67eaccd5356e"},
{file = "scipy-1.11.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ea7f579182d83d00fed0e5c11a4aa5ffe01460444219dedc448a36adf0c3917"},
{file = "scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c77da50c9a91e23beb63c2a711ef9e9ca9a2060442757dffee34ea41847d8156"},
{file = "scipy-1.11.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15f237e890c24aef6891c7d008f9ff7e758c6ef39a2b5df264650eb7900403c0"},
{file = "scipy-1.11.3-cp39-cp39-win_amd64.whl", hash = "sha256:4b4bb134c7aa457e26cc6ea482b016fef45db71417d55cc6d8f43d799cdf9ef2"},
{file = "scipy-1.11.3.tar.gz", hash = "sha256:bba4d955f54edd61899776bad459bf7326e14b9fa1c552181f0479cc60a568cd"},
]
[package.dependencies]
numpy = ">=1.18.5,<1.26.0"
numpy = ">=1.21.6,<1.28.0"
[package.extras]
dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"]
doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"]
test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"]
doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"]
test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "seaborn"
@ -3432,13 +3441,13 @@ files = [
[[package]]
name = "ultralytics"
version = "8.0.193"
version = "8.0.200"
description = "Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification."
optional = false
python-versions = ">=3.8"
files = [
{file = "ultralytics-8.0.193-py3-none-any.whl", hash = "sha256:de604498fb234947f497c9d3db51e0246436bbcfb62da10f12f5a3f33224d409"},
{file = "ultralytics-8.0.193.tar.gz", hash = "sha256:c61ab70b228f060d37e5e9d833ce491a3d29c71ec31c0087dc26852133a0c2c9"},
{file = "ultralytics-8.0.200-py3-none-any.whl", hash = "sha256:68de5a0db71eb3c1eadc55d2303e559804630e3b07d30b66415520ca135716bc"},
{file = "ultralytics-8.0.200.tar.gz", hash = "sha256:d6f46048dcc0827e370e391c825c2aa26136e40da5464a8c667d2424c2bffd2f"},
]
[package.dependencies]
@ -3459,18 +3468,18 @@ torchvision = ">=0.9.0"
tqdm = ">=4.64.0"
[package.extras]
dev = ["check-manifest", "coverage", "ipython", "mkdocs-material", "mkdocs-redirects", "mkdocs-ultralytics-plugin (>=0.0.29)", "mkdocstrings[python]", "pytest", "pytest-cov"]
dev = ["check-manifest", "coverage", "ipython", "mkdocs-material", "mkdocs-redirects", "mkdocs-ultralytics-plugin (>=0.0.29)", "mkdocstrings[python]", "pre-commit", "pytest", "pytest-cov"]
export = ["coremltools (>=7.0)", "openvino-dev (>=2023.0)", "tensorflow (<=2.13.1)", "tensorflowjs"]
[[package]]
name = "urllib3"
version = "2.0.6"
version = "2.0.7"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.7"
files = [
{file = "urllib3-2.0.6-py3-none-any.whl", hash = "sha256:7a7c7003b000adf9e7ca2a377c9688bbc54ed41b985789ed576570342a375cd2"},
{file = "urllib3-2.0.6.tar.gz", hash = "sha256:b19e1a85d206b56d7df1d5e683df4a7725252a964e3993648dd0fb5a1c157564"},
{file = "urllib3-2.0.7-py3-none-any.whl", hash = "sha256:fdb6d215c776278489906c2f8916e6e7d4f5a9b602ccbcfdf7f016fc8da0596e"},
{file = "urllib3-2.0.7.tar.gz", hash = "sha256:c97dfde1f7bd43a71c8d2a58e369e9b2bf692d1334ea9f9cae55add7d0dd0f84"},
]
[package.extras]
@ -3618,4 +3627,4 @@ files = [
[metadata]
lock-version = "2.0"
python-versions = ">=3.10, <3.12"
content-hash = "952e41ab099f9d1c7055465d5a3c228df677c422d20dea8ff8d558d2e4d8f2be"
content-hash = "6712094a7e402c4587037939b7a33ad4c2463a545c222374bc471925c33242d9"

View File

@ -1,15 +1,19 @@
[tool.poetry]
name = "set_detect_notify"
name = "wyzely-detect"
version = "0.1.0"
description = "Detect all the things"
description = "Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices"
authors = ["slashtechno <77907286+slashtechno@users.noreply.github.com>"]
repository = "https://github.com/slashtechno/wyzely-detect"
keywords = ["object-detection", "face-detection", "wyze", "security", "yolov8", "unified-push"]
license = "MIT"
readme = "README.md"
packages = [{include = "set_detect_notify"}]
packages = [{include = "wyzely_detect"}]
[tool.poetry.dependencies]
# python = "^3.10"
# Works on 3.10 and 3.11, at least in my testing
python = ">=3.10, <3.12"
python-dotenv = "^1.0.0"
httpx = "^0.25.0"
opencv-python = "^4.8.1.78"
@ -20,10 +24,15 @@ numpy = "^1.23.2"
# https://github.com/python-poetry/poetry/issues/6409
torch = ">=2.0.0, !=2.0.1, !=2.1.0"
# https://stackoverflow.com/a/76477590/18270659
# https://discuss.tensorflow.org/t/tensorflow-io-gcs-filesystem-with-windows/18849/4
# Might be able to remove this version constraint later
tensorflow-io-gcs-filesystem = "0.31.0"
deepface = "^0.0.79"
tensorflow = "^2.14.0"
deepface = "^0.0.79"
[tool.poetry.group.dev.dependencies]
black = "^23.9.1"
ruff = "^0.0.291"
@ -41,6 +50,7 @@ build-backend = "poetry.core.masonry.api"
# Where possible, `black` will attempt to format to 88 characters
# However, setting ruff to 135 will allow for longer lines that can't be auto-formatted
line-length = 135
extend-select= ["FIX002"]
[tool.poetry.scripts]
set-detect-notify = "set_detect_notify.__main__:main"
wyzely-detect = "wyzely_detect.__main__:main"

View File

@ -33,9 +33,11 @@ def main():
else:
print("No .env file found")
# TODO: If possible, move the argparse stuff to a separate file
# It's taking up too many lines in this file
argparser = argparse.ArgumentParser(
prog="Detect It",
description="Detect it all!",
prog="Wyzely Detect",
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
epilog=":)",
)
@ -87,7 +89,7 @@ def main():
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
else "faces",
type=str,
help="The directory to store the faces. Should contain 1 subdirectory of images per person",
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
)
argparser.add_argument(
"--detect-object",
@ -118,13 +120,13 @@ def main():
# Defaults for the stuff here and down are already set in notify.py.
# Setting them here just means that argparse will display the default values as defualt
# TODO: Perhaps just remove the default parameter and just add to the help message that the default is set is x
# TODO: Make ntfy optional in ntfy.py. Currently, unless there is a local or LAN instance of ntfy, this can't run offline
notifcation_services = argparser.add_argument_group("Notification Services")
notifcation_services.add_argument(
"--ntfy-url",
default=os.environ["NTFY_URL"]
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
else "https://ntfy.sh/set-detect-notify",
else "https://ntfy.sh/wyzely-detect",
type=str,
help="The URL to send notifications to",
)
@ -158,7 +160,7 @@ def main():
args = argparser.parse_args()
# Check if a CUDA GPU is available. If it is, set it via torch. Ff not, set it to cpu
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
# https://github.com/ultralytics/ultralytics/issues/3084#issuecomment-1732433168
# Currently, I have been unable to set up Poetry to use GPU for Torch
for i in range(torch.cuda.device_count()):
@ -198,6 +200,10 @@ def main():
# view_frame = cv2.resize(frame, (0, 0), fx=args.view_scale, fy=args.view_scale)
results = model(run_frame, verbose=False)
path_to_faces = Path(args.faces_directory)
path_to_faces_exists = path_to_faces.is_dir()
for i, r in enumerate(results):
# list of dicts with each dict containing a label, x1, y1, x2, y2
plot_boxes = []
@ -205,19 +211,23 @@ def main():
# The following is stuff for people
# This is still in the for loop as each result, no matter if anything is detected, will be present.
# Thus, there will always be one result (r)
if face_details := utils.recognize_face(
path_to_directory=Path(args.faces_directory), run_frame=run_frame
):
plot_boxes.append(face_details)
objects_and_peoples = notify.thing_detected(
thing_name=face_details["label"],
objects_and_peoples=objects_and_peoples,
detection_type="peoples",
detection_window=args.detection_window,
detection_duration=args.detection_duration,
notification_window=args.notification_window,
ntfy_url=args.ntfy_url,
)
# Only run if path_to_faces exists
# May be better to check every iteration, but this also works
if path_to_faces_exists:
if face_details := utils.recognize_face(
path_to_directory=path_to_faces, run_frame=run_frame
):
plot_boxes.append(face_details)
objects_and_peoples = notify.thing_detected(
thing_name=face_details["label"],
objects_and_peoples=objects_and_peoples,
detection_type="peoples",
detection_window=args.detection_window,
detection_duration=args.detection_duration,
notification_window=args.notification_window,
ntfy_url=args.ntfy_url,
)
# The following is stuff for objects
# Setup dictionary of object names

View File

@ -32,7 +32,7 @@ def thing_detected(
detection_window: int = 15,
detection_duration: int = 2,
notification_window: int = 15,
ntfy_url: str = "https://ntfy.sh/set-detect-notify",
ntfy_url: str = "https://ntfy.sh/wyzely-detect",
) -> dict:
"""
A function to make sure 2 seconds of detection is detected in 15 seconds, 15 seconds apart.

View File

@ -74,6 +74,7 @@ def recognize_face(
In addition, accepts an opencv image to be used as the frame to be searched
Returns a single dictonary as currently only 1 face can be detected in each frame
Cosine threshold is 0.3, so if the confidence is less than that, it will return None
dict contains the following keys: label, x1, y1, x2, y2
The directory should be structured as follows:
faces/
@ -92,37 +93,52 @@ def recognize_face(
"""
global first_face_try
# If it's the first time the function is being run, remove representations_vgg_face.pkl, if it exists
# If it's the first time the function is being run, remove representations_arcface.pkl, if it exists
if first_face_try:
try:
Path("representations_vgg_face.pkl").unlink()
print("Removing representations_vgg_face.pkl")
path_to_directory.joinpath("representations_arcface.pkl").unlink()
print("Removing representations_arcface.pkl")
except FileNotFoundError:
pass
print("representations_arcface.pkl does not exist")
first_face_try = False
# face_dataframes is a vanilla list of dataframes
# It seems face_dataframes is empty if the face database (directory) doesn't exist. Seems to work if it's empty though
# This line is here to prevent a crash if that happens. However, there is a check in __main__ so it shouldn't happen
face_dataframes = []
try:
face_dataframes = DeepFace.find(
run_frame,
db_path=str(path_to_directory),
enforce_detection=True,
# Problem with enforce_detection=False is that it will always (?) return a face, no matter the confidence
# Thus, false-positives need to be filtered out
enforce_detection=False,
silent=True,
# Could use VGG-Face, but whilst fixing another issue, ArcFace seemed to be slightly faster
# I read somewhere that opencv is the fastest (but not as accurate). Could be changed later, but opencv seems to work well
model_name="ArcFace",
detector_backend="opencv",
)
except ValueError as e:
if (
str(e)
== "Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False."
== "Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False." # noqa: E501
):
# print("No faces recognized") # For debugging
return None
else:
raise e
# Iteate over the dataframes
for df in face_dataframes:
# The last row is the highest confidence
# So we can just grab the path from there
# iloc = Integer LOCation
path_to_image = Path(df.iloc[-1]["identity"])
# Get the name of the parent directory
label = path_to_image.parent.name
# If the parent name is the same as the path to the database, then set label to the image name instead of the parent directory name
if path_to_image.parent == Path(path_to_directory):
label = path_to_image.name
else:
label = path_to_image.parent.name
# Return the coordinates of the box in xyxy format, rather than xywh
# This is because YOLO uses xyxy, and that's how plot_label expects
# Also, xyxy is just the top left and bottom right corners of the box
@ -132,9 +148,11 @@ def recognize_face(
"x2": df.iloc[-1]["source_x"] + df.iloc[-1]["source_w"],
"y2": df.iloc[-1]["source_y"] + df.iloc[-1]["source_h"],
}
# After some brief testing, it seems positve matches are > 0.3
# I have not seen any false positives, so there is no threashold yet
distance = df.iloc[-1]["VGG-Face_cosine"]
# After some brief testing, it seems positive matches are > 0.3
distance = df.iloc[-1]["ArcFace_cosine"]
# TODO: Make this a CLI argument
if distance < 0.3:
return None
# if 0.5 < distance < 0.7:
# label = "Unknown"
to_return = dict(label=label, **coordinates)