Merge pull request #7 from slashtechno/improve-argparse-organization

Improve argparse organization
This commit is contained in:
slashtechno 2023-10-27 12:01:51 -05:00 committed by GitHub
commit 8026fd88f2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 205 additions and 161 deletions

View File

@ -1,17 +1,14 @@
# import face_recognition # import face_recognition
import cv2
import dotenv
from pathlib import Path from pathlib import Path
import os
import cv2
# import hjson as json # import hjson as json
import torch import torch
from ultralytics import YOLO from ultralytics import YOLO
import argparse from .utils import notify, utils
from .utils.cli_args import argparser
from .utils import notify
from .utils import utils
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
args = None args = None
@ -27,137 +24,6 @@ def main():
global args global args
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu # RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
if Path(".env").is_file():
dotenv.load_dotenv()
print("Loaded .env file")
else:
print("No .env file found")
# TODO: If possible, move the argparse stuff to a separate file
# It's taking up too many lines in this file
argparser = argparse.ArgumentParser(
prog="Wyzely Detect",
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
epilog=":)",
)
# required='RUN_SCALE' not in os.environ,
argparser.add_argument(
"--run-scale",
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
default=os.environ["RUN_SCALE"]
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
# else 0.25,
else 1,
type=float,
help="The scale to run the detection at, default is 0.25",
)
argparser.add_argument(
"--view-scale",
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
default=os.environ["VIEW_SCALE"]
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
# else 0.75,
else 1,
type=float,
help="The scale to view the detection at, default is 0.75",
)
argparser.add_argument(
"--no-display",
default=os.environ["NO_DISPLAY"]
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
else False,
action="store_true",
help="Don't display the video feed",
)
argparser.add_argument(
"--confidence-threshold",
default=os.environ["CONFIDENCE_THRESHOLD"]
if "CONFIDENCE_THRESHOLD" in os.environ
and os.environ["CONFIDENCE_THRESHOLD"] != ""
else 0.6,
type=float,
help="The confidence threshold to use",
)
argparser.add_argument(
"--faces-directory",
default=os.environ["FACES_DIRECTORY"]
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
else "faces",
type=str,
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
)
argparser.add_argument(
"--detect-object",
nargs="*",
default=[],
type=str,
help="The object(s) to detect. Must be something the model is trained to detect",
)
stream_source = argparser.add_mutually_exclusive_group()
stream_source.add_argument(
"--url",
default=os.environ["URL"]
if "URL" in os.environ and os.environ["URL"] != ""
else None, # noqa: E501
type=str,
help="The URL of the stream to use",
)
stream_source.add_argument(
"--capture-device",
default=os.environ["CAPTURE_DEVICE"]
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
else 0, # noqa: E501
type=int,
help="The capture device to use. Can also be a url.",
)
# Defaults for the stuff here and down are already set in notify.py.
# Setting them here just means that argparse will display the default values as defualt
# TODO: Perhaps just remove the default parameter and just add to the help message that the default is set is x
# TODO: Make ntfy optional in ntfy.py. Currently, unless there is a local or LAN instance of ntfy, this can't run offline
notifcation_services = argparser.add_argument_group("Notification Services")
notifcation_services.add_argument(
"--ntfy-url",
default=os.environ["NTFY_URL"]
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
else "https://ntfy.sh/wyzely-detect",
type=str,
help="The URL to send notifications to",
)
timers = argparser.add_argument_group("Timers")
timers.add_argument(
"--detection-duration",
default=os.environ["DETECTION_DURATION"]
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
else 2,
type=int,
help="The duration (in seconds) that an object must be detected for before sending a notification",
)
timers.add_argument(
"--detection-window",
default=os.environ["DETECTION_WINDOW"]
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
else 15,
type=int,
help="The time (seconds) before the detection duration resets",
)
timers.add_argument(
"--notification-window",
default=os.environ["NOTIFICATION_WINDOW"]
if "NOTIFICATION_WINDOW" in os.environ
and os.environ["NOTIFICATION_WINDOW"] != ""
else 30,
type=int,
help="The time (seconds) before another notification can be sent",
)
args = argparser.parse_args() args = argparser.parse_args()
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu # Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
@ -175,8 +41,8 @@ def main():
# Depending on if the user wants to use a stream or a capture device, # Depending on if the user wants to use a stream or a capture device,
# Set the video capture to the appropriate source # Set the video capture to the appropriate source
if args.url: if args.rtsp_url is not None:
video_capture = cv2.VideoCapture(args.url) video_capture = cv2.VideoCapture(args.rtsp_url)
else: else:
video_capture = cv2.VideoCapture(args.capture_device) video_capture = cv2.VideoCapture(args.capture_device)
@ -216,7 +82,10 @@ def main():
# May be better to check every iteration, but this also works # May be better to check every iteration, but this also works
if path_to_faces_exists: if path_to_faces_exists:
if face_details := utils.recognize_face( if face_details := utils.recognize_face(
path_to_directory=path_to_faces, run_frame=run_frame path_to_directory=path_to_faces,
run_frame=run_frame,
min_confidence=args.face_confidence_threshold,
no_remove_representations=args.no_remove_representations,
): ):
plot_boxes.append(face_details) plot_boxes.append(face_details)
objects_and_peoples = notify.thing_detected( objects_and_peoples = notify.thing_detected(
@ -265,7 +134,7 @@ def main():
# print("---") # print("---")
# Now do stuff (if conf > 0.5) # Now do stuff (if conf > 0.5)
if conf < args.confidence_threshold or ( if conf < args.object_confidence_threshold or (
class_id not in args.detect_object and args.detect_object != [] class_id not in args.detect_object and args.detect_object != []
): ):
# If the confidence is too low # If the confidence is too low

View File

@ -0,0 +1,167 @@
import argparse
import os
import dotenv
from pathlib import Path
argparser = None
def set_argparse():
global argparser
if Path(".env").is_file():
dotenv.load_dotenv()
print("Loaded .env file")
else:
print("No .env file found")
# One important thing to consider is that most function parameters are optional and have a default value
# However, with argparse, those are never used since a argparse always passes something, even if it's None
argparser = argparse.ArgumentParser(
prog="Wyzely Detect",
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
epilog=":)",
)
video_options = argparser.add_argument_group("Video Options")
stream_source = video_options.add_mutually_exclusive_group()
stream_source.add_argument(
"--rtsp-url",
default=os.environ["RTSP_URL"]
if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != ""
else None, # noqa: E501
type=str,
help="RTSP camera URL",
)
stream_source.add_argument(
"--capture-device",
default=os.environ["CAPTURE_DEVICE"]
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
else 0, # noqa: E501
type=int,
help="Capture device number",
)
video_options.add_argument(
"--run-scale",
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
default=os.environ["RUN_SCALE"]
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
# else 0.25,
else 1,
type=float,
help="The scale to run the detection at, default is 0.25",
)
video_options.add_argument(
"--view-scale",
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
default=os.environ["VIEW_SCALE"]
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
# else 0.75,
else 1,
type=float,
help="The scale to view the detection at, default is 0.75",
)
video_options.add_argument(
"--no-display",
default=os.environ["NO_DISPLAY"]
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
else False,
action="store_true",
help="Don't display the video feed",
)
notifcation_services = argparser.add_argument_group("Notification Services")
notifcation_services.add_argument(
"--ntfy-url",
default=os.environ["NTFY_URL"]
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
else None,
type=str,
help="The URL to send notifications to",
)
timers = argparser.add_argument_group("Timers")
timers.add_argument(
"--detection-duration",
default=os.environ["DETECTION_DURATION"]
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
else 2,
type=int,
help="The duration (in seconds) that an object must be detected for before sending a notification",
)
timers.add_argument(
"--detection-window",
default=os.environ["DETECTION_WINDOW"]
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
else 15,
type=int,
help="The time (seconds) before the detection duration resets",
)
timers.add_argument(
"--notification-window",
default=os.environ["NOTIFICATION_WINDOW"]
if "NOTIFICATION_WINDOW" in os.environ
and os.environ["NOTIFICATION_WINDOW"] != ""
else 30,
type=int,
help="The time (seconds) before another notification can be sent",
)
face_recognition = argparser.add_argument_group("Face Recognition options")
face_recognition.add_argument(
"--faces-directory",
default=os.environ["FACES_DIRECTORY"]
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
else "faces",
type=str,
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
)
face_recognition.add_argument(
"--face-confidence-threshold",
default=os.environ["FACE_CONFIDENCE_THRESHOLD"]
if "FACE_CONFIDENCE_THRESHOLD" in os.environ
and os.environ["FACE_CONFIDENCE_THRESHOLD"] != ""
else 0.3,
type=float,
help="The confidence (currently cosine similarity) threshold to use for face recognition",
)
face_recognition.add_argument(
"--no-remove-representations",
default=os.environ["NO_REMOVE_REPRESENTATIONS"]
if "NO_REMOVE_REPRESENTATIONS" in os.environ
and os.environ["NO_REMOVE_REPRESENTATIONS"] != ""
else False,
action="store_true",
help="Don't remove representations_<model>.pkl at the start of the program. Greatly improves startup time, but doesn't take into account changes to the faces directory since it was created", # noqa: E501
)
object_detection = argparser.add_argument_group("Object Detection options")
object_detection.add_argument(
"--detect-object",
nargs="*",
default=[],
type=str,
help="The object(s) to detect. Must be something the model is trained to detect",
)
object_detection.add_argument(
"--object-confidence-threshold",
default=os.environ["OBJECT_CONFIDENCE_THRESHOLD"]
if "OBJECT_CONFIDENCE_THRESHOLD" in os.environ
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"] != ""
else 0.6,
type=float,
help="The confidence threshold to use",
)
# return argparser
# This will run when this file is imported
set_argparse()

View File

@ -104,18 +104,23 @@ def thing_detected(
): ):
respective_type[thing_name]["last_notification_time"] = time.time() respective_type[thing_name]["last_notification_time"] = time.time()
print(f"Detected {thing_name} for {detection_duration} seconds") print(f"Detected {thing_name} for {detection_duration} seconds")
headers = construct_ntfy_headers( if ntfy_url is None:
title=f"{thing_name} detected", print(
tag="rotating_light", "ntfy_url is None. Not sending notification. Set ntfy_url to send notifications"
priority="default", )
) else:
send_notification( headers = construct_ntfy_headers(
data=f"{thing_name} detected for {detection_duration} seconds", title=f"{thing_name} detected",
headers=headers, tag="rotating_light",
url=ntfy_url, priority="default",
) )
# Reset the detection duration send_notification(
print("Just sent a notification - resetting detection duration") data=f"{thing_name} detected for {detection_duration} seconds",
headers=headers,
url=ntfy_url,
)
# Reset the detection duration
print("Just sent a notification - resetting detection duration")
respective_type[thing_name]["detection_duration"] = 0 respective_type[thing_name]["detection_duration"] = 0
# Take the aliased objects_and_peoples and update the respective dictionary # Take the aliased objects_and_peoples and update the respective dictionary

View File

@ -68,6 +68,8 @@ def recognize_face(
path_to_directory: Path = Path("faces"), path_to_directory: Path = Path("faces"),
# opencv image # opencv image
run_frame: np.ndarray = None, run_frame: np.ndarray = None,
min_confidence: float = 0.3,
no_remove_representations: bool = False,
) -> np.ndarray: ) -> np.ndarray:
""" """
Accepts a path to a directory of images of faces to be used as a refference Accepts a path to a directory of images of faces to be used as a refference
@ -94,13 +96,16 @@ def recognize_face(
global first_face_try global first_face_try
# If it's the first time the function is being run, remove representations_arcface.pkl, if it exists # If it's the first time the function is being run, remove representations_arcface.pkl, if it exists
if first_face_try: if first_face_try and not no_remove_representations:
try: try:
path_to_directory.joinpath("representations_arcface.pkl").unlink() path_to_directory.joinpath("representations_arcface.pkl").unlink()
print("Removing representations_arcface.pkl") print("Removing representations_arcface.pkl")
except FileNotFoundError: except FileNotFoundError:
print("representations_arcface.pkl does not exist") print("representations_arcface.pkl does not exist")
first_face_try = False first_face_try = False
elif first_face_try and no_remove_representations:
print("Not attempting to remove representations_arcface.pkl")
first_face_try = False
# face_dataframes is a vanilla list of dataframes # face_dataframes is a vanilla list of dataframes
# It seems face_dataframes is empty if the face database (directory) doesn't exist. Seems to work if it's empty though # It seems face_dataframes is empty if the face database (directory) doesn't exist. Seems to work if it's empty though
@ -134,7 +139,7 @@ def recognize_face(
# So we can just grab the path from there # So we can just grab the path from there
# iloc = Integer LOCation # iloc = Integer LOCation
path_to_image = Path(df.iloc[-1]["identity"]) path_to_image = Path(df.iloc[-1]["identity"])
# If the parent name is the same as the path to the database, then set label to the image name instead of the parent directory name # If the parent name is the same as the path to the database, then set label to the image name instead of the parent name
if path_to_image.parent == Path(path_to_directory): if path_to_image.parent == Path(path_to_directory):
label = path_to_image.name label = path_to_image.name
else: else:
@ -149,15 +154,13 @@ def recognize_face(
"y2": df.iloc[-1]["source_y"] + df.iloc[-1]["source_h"], "y2": df.iloc[-1]["source_y"] + df.iloc[-1]["source_h"],
} }
# After some brief testing, it seems positive matches are > 0.3 # After some brief testing, it seems positive matches are > 0.3
distance = df.iloc[-1]["ArcFace_cosine"] cosine_similarity = df.iloc[-1]["ArcFace_cosine"]
# TODO: Make this a CLI argument if cosine_similarity < min_confidence:
if distance < 0.3:
return None return None
# if 0.5 < distance < 0.7:
# label = "Unknown" # label = "Unknown"
to_return = dict(label=label, **coordinates) to_return = dict(label=label, **coordinates)
print( print(
f"Confindence: {distance}, filname: {path_to_image.name}, to_return: {to_return}" f"Cosine similarity: {cosine_similarity}, filname: {path_to_image.name}, to_return: {to_return}"
) )
return to_return return to_return