Merge pull request #7 from slashtechno/improve-argparse-organization
Improve argparse organization
This commit is contained in:
commit
8026fd88f2
|
@ -1,17 +1,14 @@
|
||||||
# import face_recognition
|
# import face_recognition
|
||||||
import cv2
|
|
||||||
import dotenv
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import os
|
|
||||||
|
import cv2
|
||||||
|
|
||||||
# import hjson as json
|
# import hjson as json
|
||||||
import torch
|
import torch
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
|
|
||||||
import argparse
|
from .utils import notify, utils
|
||||||
|
from .utils.cli_args import argparser
|
||||||
from .utils import notify
|
|
||||||
from .utils import utils
|
|
||||||
|
|
||||||
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
||||||
args = None
|
args = None
|
||||||
|
@ -27,137 +24,6 @@ def main():
|
||||||
global args
|
global args
|
||||||
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
|
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
|
||||||
|
|
||||||
if Path(".env").is_file():
|
|
||||||
dotenv.load_dotenv()
|
|
||||||
print("Loaded .env file")
|
|
||||||
else:
|
|
||||||
print("No .env file found")
|
|
||||||
|
|
||||||
# TODO: If possible, move the argparse stuff to a separate file
|
|
||||||
# It's taking up too many lines in this file
|
|
||||||
argparser = argparse.ArgumentParser(
|
|
||||||
prog="Wyzely Detect",
|
|
||||||
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
|
|
||||||
epilog=":)",
|
|
||||||
)
|
|
||||||
|
|
||||||
# required='RUN_SCALE' not in os.environ,
|
|
||||||
|
|
||||||
argparser.add_argument(
|
|
||||||
"--run-scale",
|
|
||||||
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
|
|
||||||
default=os.environ["RUN_SCALE"]
|
|
||||||
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
|
|
||||||
# else 0.25,
|
|
||||||
else 1,
|
|
||||||
type=float,
|
|
||||||
help="The scale to run the detection at, default is 0.25",
|
|
||||||
)
|
|
||||||
argparser.add_argument(
|
|
||||||
"--view-scale",
|
|
||||||
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
|
|
||||||
default=os.environ["VIEW_SCALE"]
|
|
||||||
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
|
|
||||||
# else 0.75,
|
|
||||||
else 1,
|
|
||||||
type=float,
|
|
||||||
help="The scale to view the detection at, default is 0.75",
|
|
||||||
)
|
|
||||||
|
|
||||||
argparser.add_argument(
|
|
||||||
"--no-display",
|
|
||||||
default=os.environ["NO_DISPLAY"]
|
|
||||||
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
|
|
||||||
else False,
|
|
||||||
action="store_true",
|
|
||||||
help="Don't display the video feed",
|
|
||||||
)
|
|
||||||
|
|
||||||
argparser.add_argument(
|
|
||||||
"--confidence-threshold",
|
|
||||||
default=os.environ["CONFIDENCE_THRESHOLD"]
|
|
||||||
if "CONFIDENCE_THRESHOLD" in os.environ
|
|
||||||
and os.environ["CONFIDENCE_THRESHOLD"] != ""
|
|
||||||
else 0.6,
|
|
||||||
type=float,
|
|
||||||
help="The confidence threshold to use",
|
|
||||||
)
|
|
||||||
|
|
||||||
argparser.add_argument(
|
|
||||||
"--faces-directory",
|
|
||||||
default=os.environ["FACES_DIRECTORY"]
|
|
||||||
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
|
|
||||||
else "faces",
|
|
||||||
type=str,
|
|
||||||
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
|
|
||||||
)
|
|
||||||
argparser.add_argument(
|
|
||||||
"--detect-object",
|
|
||||||
nargs="*",
|
|
||||||
default=[],
|
|
||||||
type=str,
|
|
||||||
help="The object(s) to detect. Must be something the model is trained to detect",
|
|
||||||
)
|
|
||||||
|
|
||||||
stream_source = argparser.add_mutually_exclusive_group()
|
|
||||||
stream_source.add_argument(
|
|
||||||
"--url",
|
|
||||||
default=os.environ["URL"]
|
|
||||||
if "URL" in os.environ and os.environ["URL"] != ""
|
|
||||||
else None, # noqa: E501
|
|
||||||
type=str,
|
|
||||||
help="The URL of the stream to use",
|
|
||||||
)
|
|
||||||
stream_source.add_argument(
|
|
||||||
"--capture-device",
|
|
||||||
default=os.environ["CAPTURE_DEVICE"]
|
|
||||||
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
|
|
||||||
else 0, # noqa: E501
|
|
||||||
type=int,
|
|
||||||
help="The capture device to use. Can also be a url.",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Defaults for the stuff here and down are already set in notify.py.
|
|
||||||
# Setting them here just means that argparse will display the default values as defualt
|
|
||||||
# TODO: Perhaps just remove the default parameter and just add to the help message that the default is set is x
|
|
||||||
# TODO: Make ntfy optional in ntfy.py. Currently, unless there is a local or LAN instance of ntfy, this can't run offline
|
|
||||||
notifcation_services = argparser.add_argument_group("Notification Services")
|
|
||||||
notifcation_services.add_argument(
|
|
||||||
"--ntfy-url",
|
|
||||||
default=os.environ["NTFY_URL"]
|
|
||||||
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
|
|
||||||
else "https://ntfy.sh/wyzely-detect",
|
|
||||||
type=str,
|
|
||||||
help="The URL to send notifications to",
|
|
||||||
)
|
|
||||||
|
|
||||||
timers = argparser.add_argument_group("Timers")
|
|
||||||
timers.add_argument(
|
|
||||||
"--detection-duration",
|
|
||||||
default=os.environ["DETECTION_DURATION"]
|
|
||||||
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
|
|
||||||
else 2,
|
|
||||||
type=int,
|
|
||||||
help="The duration (in seconds) that an object must be detected for before sending a notification",
|
|
||||||
)
|
|
||||||
timers.add_argument(
|
|
||||||
"--detection-window",
|
|
||||||
default=os.environ["DETECTION_WINDOW"]
|
|
||||||
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
|
|
||||||
else 15,
|
|
||||||
type=int,
|
|
||||||
help="The time (seconds) before the detection duration resets",
|
|
||||||
)
|
|
||||||
timers.add_argument(
|
|
||||||
"--notification-window",
|
|
||||||
default=os.environ["NOTIFICATION_WINDOW"]
|
|
||||||
if "NOTIFICATION_WINDOW" in os.environ
|
|
||||||
and os.environ["NOTIFICATION_WINDOW"] != ""
|
|
||||||
else 30,
|
|
||||||
type=int,
|
|
||||||
help="The time (seconds) before another notification can be sent",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = argparser.parse_args()
|
args = argparser.parse_args()
|
||||||
|
|
||||||
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
|
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
|
||||||
|
@ -175,8 +41,8 @@ def main():
|
||||||
|
|
||||||
# Depending on if the user wants to use a stream or a capture device,
|
# Depending on if the user wants to use a stream or a capture device,
|
||||||
# Set the video capture to the appropriate source
|
# Set the video capture to the appropriate source
|
||||||
if args.url:
|
if args.rtsp_url is not None:
|
||||||
video_capture = cv2.VideoCapture(args.url)
|
video_capture = cv2.VideoCapture(args.rtsp_url)
|
||||||
else:
|
else:
|
||||||
video_capture = cv2.VideoCapture(args.capture_device)
|
video_capture = cv2.VideoCapture(args.capture_device)
|
||||||
|
|
||||||
|
@ -216,7 +82,10 @@ def main():
|
||||||
# May be better to check every iteration, but this also works
|
# May be better to check every iteration, but this also works
|
||||||
if path_to_faces_exists:
|
if path_to_faces_exists:
|
||||||
if face_details := utils.recognize_face(
|
if face_details := utils.recognize_face(
|
||||||
path_to_directory=path_to_faces, run_frame=run_frame
|
path_to_directory=path_to_faces,
|
||||||
|
run_frame=run_frame,
|
||||||
|
min_confidence=args.face_confidence_threshold,
|
||||||
|
no_remove_representations=args.no_remove_representations,
|
||||||
):
|
):
|
||||||
plot_boxes.append(face_details)
|
plot_boxes.append(face_details)
|
||||||
objects_and_peoples = notify.thing_detected(
|
objects_and_peoples = notify.thing_detected(
|
||||||
|
@ -265,7 +134,7 @@ def main():
|
||||||
# print("---")
|
# print("---")
|
||||||
|
|
||||||
# Now do stuff (if conf > 0.5)
|
# Now do stuff (if conf > 0.5)
|
||||||
if conf < args.confidence_threshold or (
|
if conf < args.object_confidence_threshold or (
|
||||||
class_id not in args.detect_object and args.detect_object != []
|
class_id not in args.detect_object and args.detect_object != []
|
||||||
):
|
):
|
||||||
# If the confidence is too low
|
# If the confidence is too low
|
||||||
|
|
|
@ -0,0 +1,167 @@
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import dotenv
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
argparser = None
|
||||||
|
|
||||||
|
|
||||||
|
def set_argparse():
|
||||||
|
global argparser
|
||||||
|
|
||||||
|
if Path(".env").is_file():
|
||||||
|
dotenv.load_dotenv()
|
||||||
|
print("Loaded .env file")
|
||||||
|
else:
|
||||||
|
print("No .env file found")
|
||||||
|
|
||||||
|
|
||||||
|
# One important thing to consider is that most function parameters are optional and have a default value
|
||||||
|
# However, with argparse, those are never used since a argparse always passes something, even if it's None
|
||||||
|
argparser = argparse.ArgumentParser(
|
||||||
|
prog="Wyzely Detect",
|
||||||
|
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
|
||||||
|
epilog=":)",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
video_options = argparser.add_argument_group("Video Options")
|
||||||
|
stream_source = video_options.add_mutually_exclusive_group()
|
||||||
|
stream_source.add_argument(
|
||||||
|
"--rtsp-url",
|
||||||
|
default=os.environ["RTSP_URL"]
|
||||||
|
if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != ""
|
||||||
|
else None, # noqa: E501
|
||||||
|
type=str,
|
||||||
|
help="RTSP camera URL",
|
||||||
|
)
|
||||||
|
stream_source.add_argument(
|
||||||
|
"--capture-device",
|
||||||
|
default=os.environ["CAPTURE_DEVICE"]
|
||||||
|
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
|
||||||
|
else 0, # noqa: E501
|
||||||
|
type=int,
|
||||||
|
help="Capture device number",
|
||||||
|
)
|
||||||
|
video_options.add_argument(
|
||||||
|
"--run-scale",
|
||||||
|
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
|
||||||
|
default=os.environ["RUN_SCALE"]
|
||||||
|
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
|
||||||
|
# else 0.25,
|
||||||
|
else 1,
|
||||||
|
type=float,
|
||||||
|
help="The scale to run the detection at, default is 0.25",
|
||||||
|
)
|
||||||
|
video_options.add_argument(
|
||||||
|
"--view-scale",
|
||||||
|
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
|
||||||
|
default=os.environ["VIEW_SCALE"]
|
||||||
|
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
|
||||||
|
# else 0.75,
|
||||||
|
else 1,
|
||||||
|
type=float,
|
||||||
|
help="The scale to view the detection at, default is 0.75",
|
||||||
|
)
|
||||||
|
|
||||||
|
video_options.add_argument(
|
||||||
|
"--no-display",
|
||||||
|
default=os.environ["NO_DISPLAY"]
|
||||||
|
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
|
||||||
|
else False,
|
||||||
|
action="store_true",
|
||||||
|
help="Don't display the video feed",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
notifcation_services = argparser.add_argument_group("Notification Services")
|
||||||
|
notifcation_services.add_argument(
|
||||||
|
"--ntfy-url",
|
||||||
|
default=os.environ["NTFY_URL"]
|
||||||
|
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
|
||||||
|
else None,
|
||||||
|
type=str,
|
||||||
|
help="The URL to send notifications to",
|
||||||
|
)
|
||||||
|
|
||||||
|
timers = argparser.add_argument_group("Timers")
|
||||||
|
timers.add_argument(
|
||||||
|
"--detection-duration",
|
||||||
|
default=os.environ["DETECTION_DURATION"]
|
||||||
|
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
|
||||||
|
else 2,
|
||||||
|
type=int,
|
||||||
|
help="The duration (in seconds) that an object must be detected for before sending a notification",
|
||||||
|
)
|
||||||
|
timers.add_argument(
|
||||||
|
"--detection-window",
|
||||||
|
default=os.environ["DETECTION_WINDOW"]
|
||||||
|
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
|
||||||
|
else 15,
|
||||||
|
type=int,
|
||||||
|
help="The time (seconds) before the detection duration resets",
|
||||||
|
)
|
||||||
|
timers.add_argument(
|
||||||
|
"--notification-window",
|
||||||
|
default=os.environ["NOTIFICATION_WINDOW"]
|
||||||
|
if "NOTIFICATION_WINDOW" in os.environ
|
||||||
|
and os.environ["NOTIFICATION_WINDOW"] != ""
|
||||||
|
else 30,
|
||||||
|
type=int,
|
||||||
|
help="The time (seconds) before another notification can be sent",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
face_recognition = argparser.add_argument_group("Face Recognition options")
|
||||||
|
face_recognition.add_argument(
|
||||||
|
"--faces-directory",
|
||||||
|
default=os.environ["FACES_DIRECTORY"]
|
||||||
|
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
|
||||||
|
else "faces",
|
||||||
|
type=str,
|
||||||
|
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
|
||||||
|
)
|
||||||
|
face_recognition.add_argument(
|
||||||
|
"--face-confidence-threshold",
|
||||||
|
default=os.environ["FACE_CONFIDENCE_THRESHOLD"]
|
||||||
|
if "FACE_CONFIDENCE_THRESHOLD" in os.environ
|
||||||
|
and os.environ["FACE_CONFIDENCE_THRESHOLD"] != ""
|
||||||
|
else 0.3,
|
||||||
|
type=float,
|
||||||
|
help="The confidence (currently cosine similarity) threshold to use for face recognition",
|
||||||
|
)
|
||||||
|
face_recognition.add_argument(
|
||||||
|
"--no-remove-representations",
|
||||||
|
default=os.environ["NO_REMOVE_REPRESENTATIONS"]
|
||||||
|
if "NO_REMOVE_REPRESENTATIONS" in os.environ
|
||||||
|
and os.environ["NO_REMOVE_REPRESENTATIONS"] != ""
|
||||||
|
else False,
|
||||||
|
action="store_true",
|
||||||
|
help="Don't remove representations_<model>.pkl at the start of the program. Greatly improves startup time, but doesn't take into account changes to the faces directory since it was created", # noqa: E501
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
object_detection = argparser.add_argument_group("Object Detection options")
|
||||||
|
object_detection.add_argument(
|
||||||
|
"--detect-object",
|
||||||
|
nargs="*",
|
||||||
|
default=[],
|
||||||
|
type=str,
|
||||||
|
help="The object(s) to detect. Must be something the model is trained to detect",
|
||||||
|
)
|
||||||
|
object_detection.add_argument(
|
||||||
|
"--object-confidence-threshold",
|
||||||
|
default=os.environ["OBJECT_CONFIDENCE_THRESHOLD"]
|
||||||
|
if "OBJECT_CONFIDENCE_THRESHOLD" in os.environ
|
||||||
|
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"] != ""
|
||||||
|
else 0.6,
|
||||||
|
type=float,
|
||||||
|
help="The confidence threshold to use",
|
||||||
|
)
|
||||||
|
|
||||||
|
# return argparser
|
||||||
|
|
||||||
|
|
||||||
|
# This will run when this file is imported
|
||||||
|
set_argparse()
|
|
@ -104,18 +104,23 @@ def thing_detected(
|
||||||
):
|
):
|
||||||
respective_type[thing_name]["last_notification_time"] = time.time()
|
respective_type[thing_name]["last_notification_time"] = time.time()
|
||||||
print(f"Detected {thing_name} for {detection_duration} seconds")
|
print(f"Detected {thing_name} for {detection_duration} seconds")
|
||||||
headers = construct_ntfy_headers(
|
if ntfy_url is None:
|
||||||
title=f"{thing_name} detected",
|
print(
|
||||||
tag="rotating_light",
|
"ntfy_url is None. Not sending notification. Set ntfy_url to send notifications"
|
||||||
priority="default",
|
)
|
||||||
)
|
else:
|
||||||
send_notification(
|
headers = construct_ntfy_headers(
|
||||||
data=f"{thing_name} detected for {detection_duration} seconds",
|
title=f"{thing_name} detected",
|
||||||
headers=headers,
|
tag="rotating_light",
|
||||||
url=ntfy_url,
|
priority="default",
|
||||||
)
|
)
|
||||||
# Reset the detection duration
|
send_notification(
|
||||||
print("Just sent a notification - resetting detection duration")
|
data=f"{thing_name} detected for {detection_duration} seconds",
|
||||||
|
headers=headers,
|
||||||
|
url=ntfy_url,
|
||||||
|
)
|
||||||
|
# Reset the detection duration
|
||||||
|
print("Just sent a notification - resetting detection duration")
|
||||||
respective_type[thing_name]["detection_duration"] = 0
|
respective_type[thing_name]["detection_duration"] = 0
|
||||||
|
|
||||||
# Take the aliased objects_and_peoples and update the respective dictionary
|
# Take the aliased objects_and_peoples and update the respective dictionary
|
||||||
|
|
|
@ -68,6 +68,8 @@ def recognize_face(
|
||||||
path_to_directory: Path = Path("faces"),
|
path_to_directory: Path = Path("faces"),
|
||||||
# opencv image
|
# opencv image
|
||||||
run_frame: np.ndarray = None,
|
run_frame: np.ndarray = None,
|
||||||
|
min_confidence: float = 0.3,
|
||||||
|
no_remove_representations: bool = False,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Accepts a path to a directory of images of faces to be used as a refference
|
Accepts a path to a directory of images of faces to be used as a refference
|
||||||
|
@ -94,13 +96,16 @@ def recognize_face(
|
||||||
global first_face_try
|
global first_face_try
|
||||||
|
|
||||||
# If it's the first time the function is being run, remove representations_arcface.pkl, if it exists
|
# If it's the first time the function is being run, remove representations_arcface.pkl, if it exists
|
||||||
if first_face_try:
|
if first_face_try and not no_remove_representations:
|
||||||
try:
|
try:
|
||||||
path_to_directory.joinpath("representations_arcface.pkl").unlink()
|
path_to_directory.joinpath("representations_arcface.pkl").unlink()
|
||||||
print("Removing representations_arcface.pkl")
|
print("Removing representations_arcface.pkl")
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print("representations_arcface.pkl does not exist")
|
print("representations_arcface.pkl does not exist")
|
||||||
first_face_try = False
|
first_face_try = False
|
||||||
|
elif first_face_try and no_remove_representations:
|
||||||
|
print("Not attempting to remove representations_arcface.pkl")
|
||||||
|
first_face_try = False
|
||||||
|
|
||||||
# face_dataframes is a vanilla list of dataframes
|
# face_dataframes is a vanilla list of dataframes
|
||||||
# It seems face_dataframes is empty if the face database (directory) doesn't exist. Seems to work if it's empty though
|
# It seems face_dataframes is empty if the face database (directory) doesn't exist. Seems to work if it's empty though
|
||||||
|
@ -134,7 +139,7 @@ def recognize_face(
|
||||||
# So we can just grab the path from there
|
# So we can just grab the path from there
|
||||||
# iloc = Integer LOCation
|
# iloc = Integer LOCation
|
||||||
path_to_image = Path(df.iloc[-1]["identity"])
|
path_to_image = Path(df.iloc[-1]["identity"])
|
||||||
# If the parent name is the same as the path to the database, then set label to the image name instead of the parent directory name
|
# If the parent name is the same as the path to the database, then set label to the image name instead of the parent name
|
||||||
if path_to_image.parent == Path(path_to_directory):
|
if path_to_image.parent == Path(path_to_directory):
|
||||||
label = path_to_image.name
|
label = path_to_image.name
|
||||||
else:
|
else:
|
||||||
|
@ -149,15 +154,13 @@ def recognize_face(
|
||||||
"y2": df.iloc[-1]["source_y"] + df.iloc[-1]["source_h"],
|
"y2": df.iloc[-1]["source_y"] + df.iloc[-1]["source_h"],
|
||||||
}
|
}
|
||||||
# After some brief testing, it seems positive matches are > 0.3
|
# After some brief testing, it seems positive matches are > 0.3
|
||||||
distance = df.iloc[-1]["ArcFace_cosine"]
|
cosine_similarity = df.iloc[-1]["ArcFace_cosine"]
|
||||||
# TODO: Make this a CLI argument
|
if cosine_similarity < min_confidence:
|
||||||
if distance < 0.3:
|
|
||||||
return None
|
return None
|
||||||
# if 0.5 < distance < 0.7:
|
|
||||||
# label = "Unknown"
|
# label = "Unknown"
|
||||||
to_return = dict(label=label, **coordinates)
|
to_return = dict(label=label, **coordinates)
|
||||||
print(
|
print(
|
||||||
f"Confindence: {distance}, filname: {path_to_image.name}, to_return: {to_return}"
|
f"Cosine similarity: {cosine_similarity}, filname: {path_to_image.name}, to_return: {to_return}"
|
||||||
)
|
)
|
||||||
return to_return
|
return to_return
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue