wyzely-detect/wyzely_detect/utils/cli_args.py

198 lines
7.6 KiB
Python

import argparse
import os
import dotenv
from pathlib import Path
argparser = None
def set_argparse():
global argparser
if Path(".env").is_file():
dotenv.load_dotenv()
print("Loaded .env file")
else:
print("No .env file found")
# One important thing to consider is that most function parameters are optional and have a default value
# However, with argparse, those are never used since a argparse always passes something, even if it's None
argparser = argparse.ArgumentParser(
prog="Wyzely Detect",
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
epilog="For env bool options, setting them to anything except for an empty string will enable them.",
)
video_options = argparser.add_argument_group("Video Options")
stream_source = video_options.add_mutually_exclusive_group()
stream_source.add_argument(
"--rtsp-url",
action="append",
# If RTSP_URL is in the environment, use it, otherwise just use a blank list
# This may cause problems down the road, but if it does, env for this can be removed
default=[os.environ["RTSP_URL"]]
if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != ""
else [],
type=str,
help="RTSP camera URL",
)
stream_source.add_argument(
"--capture-device",
action="append",
# If CAPTURE_DEVICE is in the environment, use it, otherwise just use a blank list
# If __main__.py detects that no capture device or remote stream is set, it will default to 0
default=[int(os.environ["CAPTURE_DEVICE"])]
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
else [],
type=int,
help="Capture device number",
)
video_options.add_argument(
"--run-scale",
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
default=os.environ["RUN_SCALE"]
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
# else 0.25,
else 1,
type=float,
help="The scale to run the detection at, default is 0.25",
)
video_options.add_argument(
"--view-scale",
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
default=os.environ["VIEW_SCALE"]
if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != ""
# else 0.75,
else 1,
type=float,
help="The scale to view the detection at, default is 0.75",
)
video_options.add_argument(
"--no-display",
default=os.environ["NO_DISPLAY"]
if "NO_DISPLAY" in os.environ
and os.environ["NO_DISPLAY"] != ""
and os.environ["NO_DISPLAY"].lower() != "false"
else False,
action="store_true",
help="Don't display the video feed",
)
video_options.add_argument(
"-c",
"--force-disable-tensorflow-gpu",
default=os.environ["FORCE_DISABLE_TENSORFLOW_GPU"]
if "FORCE_DISABLE_TENSORFLOW_GPU" in os.environ
and os.environ["FORCE_DISABLE_TENSORFLOW_GPU"] != ""
and os.environ["FORCE_DISABLE_TENSORFLOW_GPU"].lower() != "false"
else False,
action="store_true",
help="Force disable tensorflow GPU through env since sometimes it's not worth it to install cudnn and whatnot",
)
notifcation_services = argparser.add_argument_group("Notification Services")
notifcation_services.add_argument(
"--ntfy-url",
default=os.environ["NTFY_URL"]
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
else None,
type=str,
help="The URL to send notifications to",
)
# Various timers
timers = argparser.add_argument_group("Timers")
timers.add_argument(
"--detection-duration",
default=os.environ["DETECTION_DURATION"]
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
else 2,
type=int,
help="The duration (in seconds) that an object must be detected for before sending a notification",
)
timers.add_argument(
"--detection-window",
default=os.environ["DETECTION_WINDOW"]
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
else 15,
type=int,
help="The time (seconds) before the detection duration resets",
)
timers.add_argument(
"--notification-window",
default=os.environ["NOTIFICATION_WINDOW"]
if "NOTIFICATION_WINDOW" in os.environ
and os.environ["NOTIFICATION_WINDOW"] != ""
else 30,
type=int,
help="The time (seconds) before another notification can be sent",
)
face_recognition = argparser.add_argument_group("Face Recognition options")
face_recognition.add_argument(
"--faces-directory",
default=os.environ["FACES_DIRECTORY"]
if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != ""
else "faces",
type=str,
help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501
)
face_recognition.add_argument(
"--face-confidence-threshold",
default=os.environ["FACE_CONFIDENCE_THRESHOLD"]
if "FACE_CONFIDENCE_THRESHOLD" in os.environ
and os.environ["FACE_CONFIDENCE_THRESHOLD"] != ""
else 0.3,
type=float,
help="The confidence (currently cosine similarity) threshold to use for face recognition",
)
face_recognition.add_argument(
"--no-remove-representations",
default=os.environ["NO_REMOVE_REPRESENTATIONS"]
if "NO_REMOVE_REPRESENTATIONS" in os.environ
and os.environ["NO_REMOVE_REPRESENTATIONS"] != ""
and os.environ["NO_REMOVE_REPRESENTATIONS"].lower() != "false"
else False,
action="store_true",
help="Don't remove representations_<model>.pkl at the start of the program. Greatly improves startup time, but doesn't take into account changes to the faces directory since it was created", # noqa: E501
)
object_detection = argparser.add_argument_group("Object Detection options")
object_detection.add_argument(
"--detect-object",
action="append",
# Stuff is appended to default, as far as I can tell
default=[],
type=str,
help="The object(s) to detect. Must be something the model is trained to detect",
)
object_detection.add_argument(
"--object-confidence-threshold",
default=os.environ["OBJECT_CONFIDENCE_THRESHOLD"]
if "OBJECT_CONFIDENCE_THRESHOLD" in os.environ
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"] != ""
# I think this should always be a str so using lower shouldn't be a problem.
# Also, if the first check fails the rest shouldn't be run
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"].lower() != "false" else 0.6,
type=float,
help="The confidence threshold to use",
)
debug = argparser.add_argument_group("Debug options")
debug.add_argument(
"--fake-second-source",
help="Duplicate the first source and use it as a second source. Capture device takes priority.",
action="store_true",
default=os.environ["FAKE_SECOND_SOURCE"]
if "FAKE_SECOND_SOURCE" in os.environ
and os.environ["FAKE_SECOND_SOURCE"] != ""
and os.environ["FAKE_SECOND_SOURCE"].lower() != "false"
else False,
)
# return argparser
# This will run when this file is imported
set_argparse()