wyzely-detect/wyzely_detect/__main__.py

192 lines
7.3 KiB
Python

# import face_recognition
from pathlib import Path
import cv2
# import hjson as json
import torch
from ultralytics import YOLO
from .utils import notify, utils
from .utils.cli_args import argparser
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
args = None
objects_and_peoples = {
"objects": {},
"peoples": {},
}
def main():
global objects_and_peoples
global args
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
args = argparser.parse_args()
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
# https://github.com/ultralytics/ultralytics/issues/3084#issuecomment-1732433168
# Currently, I have been unable to set up Poetry to use GPU for Torch
for i in range(torch.cuda.device_count()):
print(torch.cuda.get_device_properties(i).name)
if torch.cuda.is_available():
torch.cuda.set_device(0)
print("Set CUDA device")
else:
print("No CUDA device available, using CPU")
model = YOLO("yolov8n.pt")
# Depending on if the user wants to use a stream or a capture device,
# Set the video capture to the appropriate source
if args.rtsp_url is not None:
video_capture = cv2.VideoCapture(args.rtsp_url)
else:
video_capture = cv2.VideoCapture(args.capture_device)
# Eliminate lag by setting the buffer size to 1
# This makes it so that the video capture will only grab the most recent frame
# However, this means that the video may be choppy
video_capture.set(cv2.CAP_PROP_BUFFERSIZE, 1)
# Print the resolution of the video
print(
f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}" # noqa: E501
)
print("Beginning video capture...")
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Only process every other frame of video to save time
# Resize frame of video to a smaller size for faster recognition processing
run_frame = cv2.resize(frame, (0, 0), fx=args.run_scale, fy=args.run_scale)
# view_frame = cv2.resize(frame, (0, 0), fx=args.view_scale, fy=args.view_scale)
results = model(run_frame, verbose=False)
path_to_faces = Path(args.faces_directory)
path_to_faces_exists = path_to_faces.is_dir()
for i, r in enumerate(results):
# list of dicts with each dict containing a label, x1, y1, x2, y2
plot_boxes = []
# The following is stuff for people
# This is still in the for loop as each result, no matter if anything is detected, will be present.
# Thus, there will always be one result (r)
# Only run if path_to_faces exists
# May be better to check every iteration, but this also works
if path_to_faces_exists:
if face_details := utils.recognize_face(
path_to_directory=path_to_faces,
run_frame=run_frame,
min_confidence=args.face_confidence_threshold,
no_remove_representations=args.no_remove_representations,
):
plot_boxes.append(face_details)
objects_and_peoples = notify.thing_detected(
thing_name=face_details["label"],
objects_and_peoples=objects_and_peoples,
detection_type="peoples",
detection_window=args.detection_window,
detection_duration=args.detection_duration,
notification_window=args.notification_window,
ntfy_url=args.ntfy_url,
)
# The following is stuff for objects
# Setup dictionary of object names
if (
objects_and_peoples["objects"] == {}
or objects_and_peoples["objects"] is None
):
for name in r.names.values():
objects_and_peoples["objects"][name] = {
"last_detection_time": None,
"detection_duration": None,
# "first_detection_time": None,
"last_notification_time": None,
}
# Also, make sure that the objects to detect are in the list of objects_and_peoples
# If it isn't, print a warning
for obj in args.detect_object:
if obj not in objects_and_peoples:
print(
f"Warning: {obj} is not in the list of objects the model can detect!"
)
for box in r.boxes:
# Get the name of the object
class_id = r.names[box.cls[0].item()]
# Get the coordinates of the object
cords = box.xyxy[0].tolist()
cords = [round(x) for x in cords]
# Get the confidence
conf = round(box.conf[0].item(), 2)
# Print it out, adding a spacer between each object
# print("Object type:", class_id)
# print("Coordinates:", cords)
# print("Probability:", conf)
# print("---")
# Now do stuff (if conf > 0.5)
if conf < args.object_confidence_threshold or (
class_id not in args.detect_object and args.detect_object != []
):
# If the confidence is too low
# or if the object is not in the list of objects to detect and the list of objects to detect is not empty
# then skip this iteration
continue
# Add the object to the list of objects to plot
plot_boxes.append(
{
"label": class_id,
"x1": cords[0],
"y1": cords[1],
"x2": cords[2],
"y2": cords[3],
}
)
objects_and_peoples = notify.thing_detected(
thing_name=class_id,
objects_and_peoples=objects_and_peoples,
detection_type="objects",
detection_window=args.detection_window,
detection_duration=args.detection_duration,
notification_window=args.notification_window,
ntfy_url=args.ntfy_url,
)
# To debug plotting, use r.plot() to cross reference the bounding boxes drawn by the plot_label() and r.plot()
frame_to_show = utils.plot_label(
boxes=plot_boxes,
full_frame=frame,
# full_frame=r.plot(),
run_scale=args.run_scale,
view_scale=args.view_scale,
)
# Display the resulting frame
# cv2.imshow("", r)
if not args.no_display:
cv2.imshow(f"Video{i}", frame_to_show)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Release handle to the webcam
print("Releasing video capture")
video_capture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()