wyzely-detect/set-detect-notify/__main__.py

307 lines
12 KiB
Python

# import face_recognition
import cv2
import numpy as np
import dotenv
from pathlib import Path
import os
import time
# import hjson as json
import torch
from ultralytics import YOLO
import argparse
from .utils import notify
from .utils import utils
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
args = None
object_names = {}
def main():
global object_names
global args
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
if Path(".env").is_file():
dotenv.load_dotenv()
print("Loaded .env file")
else:
print("No .env file found")
argparser = argparse.ArgumentParser(
prog="Detect It",
description="Detect it all!",
epilog=":)",
)
# required='RUN_SCALE' not in os.environ,
argparser.add_argument(
"--run-scale",
# Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25
default=os.environ["RUN_SCALE"]
if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != ""
else 0.25, # noqa: E501
type=float,
help="The scale to run the detection at, default is 0.25",
)
argparser.add_argument(
'--view-scale',
# Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75
default=os.environ['VIEW_SCALE'] if 'VIEW_SCALE' in os.environ and os.environ['VIEW_SCALE'] != '' else 0.75, # noqa: E501
type=float,
help="The scale to view the detection at, default is 0.75",
)
argparser.add_argument(
"--confidence-threshold",
default=os.environ["CONFIDENCE_THRESHOLD"]
if "CONFIDENCE_THRESHOLD" in os.environ
and os.environ["CONFIDENCE_THRESHOLD"] != ""
else 0.6,
type=float,
help="The confidence threshold to use",
)
stream_source = argparser.add_mutually_exclusive_group()
stream_source.add_argument(
"--url",
default=os.environ["URL"]
if "URL" in os.environ and os.environ["URL"] != ""
else None, # noqa: E501
type=str,
help="The URL of the stream to use",
)
stream_source.add_argument(
"--capture-device",
default=os.environ["CAPTURE_DEVICE"]
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
else 0, # noqa: E501
type=int,
help="The capture device to use. Can also be a url.",
)
notifcation_services = argparser.add_argument_group("Notification Services")
notifcation_services.add_argument(
"--ntfy-url",
default=os.environ["NTFY_URL"]
if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != ""
else "https://ntfy.sh/set-detect-notify",
type=str,
help="The URL to send notifications to",
)
timers = argparser.add_argument_group("Timers")
timers.add_argument(
"--detection-duration",
default=os.environ["DETECTION_DURATION"]
if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != ""
else 2,
type=int,
help="The duration (in seconds) that an object must be detected for before sending a notification",
)
timers.add_argument(
"--detection-window",
default=os.environ["DETECTION_WINDOW"]
if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != ""
else 15,
type=int,
help="The time (seconds) before the detection duration resets",
)
timers.add_argument(
"--notification-window",
default=os.environ["NOTIFICATION_WINDOW"]
if "NOTIFICATION_WINDOW" in os.environ
and os.environ["NOTIFICATION_WINDOW"] != ""
else 30,
type=int,
help="The time (seconds) before another notification can be sent",
)
args = argparser.parse_args()
# Check if a CUDA GPU is available. If it is, set it via torch. Ff not, set it to cpu
# https://github.com/ultralytics/ultralytics/issues/3084#issuecomment-1732433168
# Currently, I have been unable to set up Poetry to use GPU for Torch
for i in range(torch.cuda.device_count()):
print(torch.cuda.get_device_properties(i).name)
if torch.cuda.is_available():
torch.cuda.set_device(0)
print("Set CUDA device")
else:
print("No CUDA device available, using CPU")
model = YOLO("yolov8n.pt")
# Depending on if the user wants to use a stream or a capture device,
# Set the video capture to the appropriate source
if args.url:
video_capture = cv2.VideoCapture(args.url)
else:
video_capture = cv2.VideoCapture(args.capture_device)
# Eliminate lag by setting the buffer size to 1
# This makes it so that the video capture will only grab the most recent frame
# However, this means that the video may be choppy
video_capture.set(cv2.CAP_PROP_BUFFERSIZE, 1)
# Print the resolution of the video
print(
f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}" # noqa: E501
)
print("Beginning video capture...")
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Only process every other frame of video to save time
# Resize frame of video to a smaller size for faster recognition processing
run_frame = cv2.resize(frame, (0, 0), fx=args.run_scale, fy=args.run_scale)
# view_frame = cv2.resize(frame, (0, 0), fx=args.view_scale, fy=args.view_scale)
results = model(run_frame, verbose=False)
for i, r in enumerate(results):
# list of dicts with each dict containing a label, x1, y1, x2, y2
plot_boxes = []
# Setup dictionary of object names
if not object_names:
for name in r.names.values():
object_names[name] = {
"last_detection_time": None,
"detection_duration": None,
# "first_detection_time": None,
"last_notification_time": None,
}
for box in r.boxes:
# Get the name of the object
class_id = r.names[box.cls[0].item()]
# Get the coordinates of the object
cords = box.xyxy[0].tolist()
cords = [round(x) for x in cords]
# Get the confidence
conf = round(box.conf[0].item(), 2)
# Print it out, adding a spacer between each object
# print("Object type:", class_id)
# print("Coordinates:", cords)
# print("Probability:", conf)
# print("---")
# Now do stuff (if conf > 0.5)
if conf < args.confidence_threshold:
# If the confidence is less than 0.5, then SKIP!!!!
continue
# Add the object to the list of objects to plot
plot_boxes.append(
{
"label": class_id,
"x1": cords[0],
"y1": cords[1],
"x2": cords[2],
"y2": cords[3],
}
)
# End goal: Send a notification when an object has been detected for 2 seconds in the past 15 seconds.
# However, don't send a notification if the last notification was less than 15 seconds ago
# (re)start cycle
if (
# If the object has not been detected before
object_names[class_id]["last_detection_time"] is None
# If the last detection was more than 15 seconds ago
or time.time() - object_names[class_id]["last_detection_time"]
> args.detection_window
):
# Set the last detection time to now
object_names[class_id]["last_detection_time"] = time.time()
print(f"First detection of {class_id} in this detection window")
# This line is important. It resets the detection duration when the object hasn't been detected for a while
# If detection duration is None, don't print anything.
# Otherwise, print that the detection duration is being reset due to inactivity
if object_names[class_id]["detection_duration"] is not None:
print(
f"Resetting detection duration for {class_id} since it hasn't been detected for {args.detection_window} seconds" # noqa: E501
)
object_names[class_id]["detection_duration"] = 0
else:
# Check if the last notification was less than 15 seconds ago
# If it was, then don't do anything
if (
time.time() - object_names[class_id]["last_detection_time"]
<= args.notification_window
):
pass
# If it was more than 15 seconds ago, reset the detection duration
# This effectively resets the notification timer
else:
print("Notification timer has expired - resetting")
object_names[class_id]["detection_duration"] = 0
object_names[class_id]["detection_duration"] += (
time.time() - object_names[class_id]["last_detection_time"]
)
# print("Updating detection duration")
object_names[class_id]["last_detection_time"] = time.time()
# (re)send notification
# Check if detection has been ongoing for 2 seconds or more in the past 15 seconds
if (
object_names[class_id]["detection_duration"]
>= args.detection_duration
and time.time() - object_names[class_id]["last_detection_time"]
<= args.detection_window
):
# If the last notification was more than 15 seconds ago, then send a notification
if (
object_names[class_id]["last_notification_time"] is None
or time.time()
- object_names[class_id]["last_notification_time"]
> args.notification_window
):
object_names[class_id]["last_notification_time"] = time.time()
print(
f"Detected {class_id} for {args.detection_duration} seconds"
)
headers = notify.construct_ntfy_headers(
title=f"{class_id} detected",
tag="rotating_light",
priority="default",
)
notify.send_notification(
data=f"{class_id} detected for {args.detection_duration} seconds",
headers=headers,
url=args.ntfy_url,
)
# Reset the detection duration
print("Just sent a notification - resetting detection duration")
object_names[class_id]["detection_duration"] = 0
frame_to_show = utils.plot_label(
boxes=plot_boxes,
full_frame=frame,
# full_frame=r.plot(),
run_scale=args.run_scale,
view_scale=args.view_scale,
)
# Display the resulting frame
# cv2.imshow("", r)
cv2.imshow(f"Video{i}", frame_to_show)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Release handle to the webcam
print("Releasing video capture")
video_capture.release()
cv2.destroyAllWindows()
main()