112 lines
3.9 KiB
Python
112 lines
3.9 KiB
Python
# import face_recognition
|
|
from pathlib import Path
|
|
import cv2
|
|
|
|
from PrettyTable import PrettyTable
|
|
|
|
# import hjson as json
|
|
import torch
|
|
from ultralytics import YOLO
|
|
|
|
from .utils import utils
|
|
from .utils.cli_args import argparser
|
|
|
|
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
|
args = None
|
|
|
|
|
|
def main():
|
|
global objects_and_peoples
|
|
global args
|
|
# RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE") # Replace this with code to check for gpu
|
|
|
|
args = argparser.parse_args()
|
|
|
|
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
|
|
# https://github.com/ultralytics/ultralytics/issues/3084#issuecomment-1732433168
|
|
# Currently, I have been unable to set up Poetry to use GPU for Torch
|
|
for i in range(torch.cuda.device_count()):
|
|
print(f'Using {torch.cuda.get_device_properties(i).name} for pytorch')
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_device(0)
|
|
print("Set CUDA device")
|
|
else:
|
|
print("No CUDA device available, using CPU")
|
|
# Seems automatically, deepface (tensorflow) tried to use my GPU on Pop!_OS (I did not set up cudnn or anything)
|
|
# Not sure the best way, in Poetry, to manage GPU libraries so for now, just use CPU
|
|
if args.force_disable_tensorflow_gpu:
|
|
print("Forcing tensorflow to use CPU")
|
|
import tensorflow as tf
|
|
tf.config.set_visible_devices([], 'GPU')
|
|
if tf.config.experimental.list_logical_devices('GPU'):
|
|
print('GPU disabled unsuccessfully')
|
|
else:
|
|
print("GPU disabled successfully")
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
|
|
# Depending on if the user wants to use a stream or a capture device,
|
|
# Set the video capture to the appropriate source
|
|
if not args.rtsp_url and not args.capture_device:
|
|
print("No stream or capture device set, defaulting to capture device 0")
|
|
args.capture_device = [0]
|
|
else:
|
|
video_sources = {
|
|
"streams": [cv2.VideoCapture(url) for url in args.rtsp_url],
|
|
"devices": [cv2.VideoCapture(device) for device in args.capture_device],
|
|
}
|
|
|
|
# Eliminate lag by setting the buffer size to 1
|
|
# This makes it so that the video capture will only grab the most recent frame
|
|
# However, this means that the video may be choppy
|
|
# Only do this for streams
|
|
for stream in video_sources["streams"]:
|
|
stream.set(cv2.CAP_PROP_BUFFERSIZE, 1)
|
|
|
|
# Print the resolution of the video
|
|
print(
|
|
f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}" # noqa: E501
|
|
)
|
|
print
|
|
print("Beginning video capture...")
|
|
while True:
|
|
# Grab a single frame of video
|
|
ret, frame = video_capture.read()
|
|
|
|
frame_to_show = utils.process_footage(
|
|
frame = frame,
|
|
run_scale = args.run_scale,
|
|
view_scale = args.view_scale,
|
|
|
|
faces_directory=Path(args.faces_directory),
|
|
face_confidence_threshold=args.face_confidence_threshold,
|
|
no_remove_representations=args.no_remove_representations,
|
|
|
|
detection_window=args.detection_window,
|
|
detection_duration=args.detection_duration,
|
|
notification_window=args.notification_window,
|
|
|
|
ntfy_url=args.ntfy_url,
|
|
|
|
model=model,
|
|
detect_object=args.detect_object,
|
|
object_confidence_threshold=args.object_confidence_threshold,
|
|
)
|
|
# Display the resulting frame
|
|
# TODO: When multi-camera support is added, this needs to be changed to allow all feeds
|
|
if not args.no_display:
|
|
cv2.imshow("Video", frame_to_show)
|
|
|
|
# Hit 'q' on the keyboard to quit!
|
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
break
|
|
|
|
# Release handle to the webcam
|
|
print("Releasing video capture")
|
|
video_capture.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|