import argparse import os import dotenv from pathlib import Path argparser = None def set_argparse(): global argparser if Path(".env").is_file(): dotenv.load_dotenv() print("Loaded .env file") else: print("No .env file found") # One important thing to consider is that most function parameters are optional and have a default value # However, with argparse, those are never used since a argparse always passes something, even if it's None argparser = argparse.ArgumentParser( prog="Wyzely Detect", description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501 epilog=":)", ) video_options = argparser.add_argument_group("Video Options") stream_source = video_options.add_mutually_exclusive_group() stream_source.add_argument( "--rtsp-url", default=os.environ["RTSP_URL"] if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != "" else None, # noqa: E501 type=str, help="RTSP camera URL", ) stream_source.add_argument( "--capture-device", default=os.environ["CAPTURE_DEVICE"] if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != "" else 0, # noqa: E501 type=int, help="Capture device number", ) video_options.add_argument( "--run-scale", # Set it to the env RUN_SCALE if it isn't blank, otherwise set it to 0.25 default=os.environ["RUN_SCALE"] if "RUN_SCALE" in os.environ and os.environ["RUN_SCALE"] != "" # else 0.25, else 1, type=float, help="The scale to run the detection at, default is 0.25", ) video_options.add_argument( "--view-scale", # Set it to the env VIEW_SCALE if it isn't blank, otherwise set it to 0.75 default=os.environ["VIEW_SCALE"] if "VIEW_SCALE" in os.environ and os.environ["VIEW_SCALE"] != "" # else 0.75, else 1, type=float, help="The scale to view the detection at, default is 0.75", ) video_options.add_argument( "--no-display", default=os.environ["NO_DISPLAY"] if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != "" else False, action="store_true", help="Don't display the video feed", ) notifcation_services = argparser.add_argument_group("Notification Services") notifcation_services.add_argument( "--ntfy-url", default=os.environ["NTFY_URL"] if "NTFY_URL" in os.environ and os.environ["NTFY_URL"] != "" else None, type=str, help="The URL to send notifications to", ) timers = argparser.add_argument_group("Timers") timers.add_argument( "--detection-duration", default=os.environ["DETECTION_DURATION"] if "DETECTION_DURATION" in os.environ and os.environ["DETECTION_DURATION"] != "" else 2, type=int, help="The duration (in seconds) that an object must be detected for before sending a notification", ) timers.add_argument( "--detection-window", default=os.environ["DETECTION_WINDOW"] if "DETECTION_WINDOW" in os.environ and os.environ["DETECTION_WINDOW"] != "" else 15, type=int, help="The time (seconds) before the detection duration resets", ) timers.add_argument( "--notification-window", default=os.environ["NOTIFICATION_WINDOW"] if "NOTIFICATION_WINDOW" in os.environ and os.environ["NOTIFICATION_WINDOW"] != "" else 30, type=int, help="The time (seconds) before another notification can be sent", ) face_recognition = argparser.add_argument_group("Face Recognition options") face_recognition.add_argument( "--faces-directory", default=os.environ["FACES_DIRECTORY"] if "FACES_DIRECTORY" in os.environ and os.environ["FACES_DIRECTORY"] != "" else "faces", type=str, help="The directory to store the faces. Can either contain images or subdirectories with images, the latter being the preferred method", # noqa: E501 ) face_recognition.add_argument( "--face-confidence-threshold", default=os.environ["FACE_CONFIDENCE_THRESHOLD"] if "FACE_CONFIDENCE_THRESHOLD" in os.environ and os.environ["FACE_CONFIDENCE_THRESHOLD"] != "" else 0.3, type=float, help="The confidence (currently cosine similarity) threshold to use for face recognition", ) face_recognition.add_argument( "--no-remove-representations", default=os.environ["NO_REMOVE_REPRESENTATIONS"] if "NO_REMOVE_REPRESENTATIONS" in os.environ and os.environ["NO_REMOVE_REPRESENTATIONS"] != "" else False, action="store_true", help="Don't remove representations_.pkl at the start of the program. Greatly improves startup time, but doesn't take into account changes to the faces directory since it was created", # noqa: E501 ) object_detection = argparser.add_argument_group("Object Detection options") object_detection.add_argument( "--detect-object", nargs="*", default=[], type=str, help="The object(s) to detect. Must be something the model is trained to detect", ) object_detection.add_argument( "--object-confidence-threshold", default=os.environ["OBJECT_CONFIDENCE_THRESHOLD"] if "OBJECT_CONFIDENCE_THRESHOLD" in os.environ and os.environ["OBJECT_CONFIDENCE_THRESHOLD"] != "" else 0.6, type=float, help="The confidence threshold to use", ) # return argparser # This will run when this file is imported set_argparse()