Compare commits
No commits in common. "f7f5db9f41533434e72c09d6f7f16332d5d91fc4" and "494708a37664a6b44642c3595ec2fb9b97a36886" have entirely different histories.
f7f5db9f41
...
494708a376
|
@ -1 +1 @@
|
|||
3.10.12
|
||||
3.11.5
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
"request": "launch",
|
||||
"module": "wyzely_detect",
|
||||
"args": [
|
||||
"--run-scale", "0.25", "--view-scale", "0.5", "--no-remove-representations", "--fake-second-source"
|
||||
"--run-scale", "0.25", "--view-scale", "0.5", "--no-remove-representations"
|
||||
],
|
||||
"justMyCode": true
|
||||
},
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
# import face_recognition
|
||||
from pathlib import Path
|
||||
import cv2
|
||||
import sys
|
||||
import os
|
||||
|
||||
from prettytable import PrettyTable
|
||||
|
||||
# import hjson as json
|
||||
|
@ -16,15 +17,17 @@ args = None
|
|||
|
||||
|
||||
def main():
|
||||
global objects_and_peoples
|
||||
global args
|
||||
|
||||
|
||||
args = argparser.parse_args()
|
||||
|
||||
# Check if a CUDA GPU is available. If it is, set it via torch. If not, set it to cpu
|
||||
# https://github.com/ultralytics/ultralytics/issues/3084#issuecomment-1732433168
|
||||
# Currently, I have been unable to set up Poetry to use GPU for Torch
|
||||
for i in range(torch.cuda.device_count()):
|
||||
print(f"Using {torch.cuda.get_device_properties(i).name} for pytorch")
|
||||
print(f'Using {torch.cuda.get_device_properties(i).name} for pytorch')
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(0)
|
||||
print("Set CUDA device")
|
||||
|
@ -35,10 +38,9 @@ def main():
|
|||
if args.force_disable_tensorflow_gpu:
|
||||
print("Forcing tensorflow to use CPU")
|
||||
import tensorflow as tf
|
||||
|
||||
tf.config.set_visible_devices([], "GPU")
|
||||
if tf.config.experimental.list_logical_devices("GPU"):
|
||||
print("GPU disabled unsuccessfully")
|
||||
tf.config.set_visible_devices([], 'GPU')
|
||||
if tf.config.experimental.list_logical_devices('GPU'):
|
||||
print('GPU disabled unsuccessfully')
|
||||
else:
|
||||
print("GPU disabled successfully")
|
||||
|
||||
|
@ -48,24 +50,15 @@ def main():
|
|||
# Set the video capture to the appropriate source
|
||||
if not args.rtsp_url and not args.capture_device:
|
||||
print("No stream or capture device set, defaulting to capture device 0")
|
||||
video_sources = {"devices": [cv2.VideoCapture(0)]}
|
||||
video_sources = {
|
||||
"devices": [cv2.VideoCapture(0)]
|
||||
}
|
||||
else:
|
||||
video_sources = {
|
||||
"streams": [cv2.VideoCapture(url) for url in args.rtsp_url],
|
||||
"devices": [cv2.VideoCapture(device) for device in args.capture_device],
|
||||
}
|
||||
|
||||
if args.fake_second_source:
|
||||
try:
|
||||
video_sources["devices"].append(video_sources["devices"][0])
|
||||
except KeyError:
|
||||
print("No capture device to use as second source. Trying stream.")
|
||||
try:
|
||||
video_sources["devices"].append(video_sources["devices"][0])
|
||||
except KeyError:
|
||||
print("No stream to use as a second source")
|
||||
# When the code tries to resize the nonexistent capture device 1, the program will fail
|
||||
|
||||
# Eliminate lag by setting the buffer size to 1
|
||||
# This makes it so that the video capture will only grab the most recent frame
|
||||
# However, this means that the video may be choppy
|
||||
|
@ -81,54 +74,40 @@ def main():
|
|||
pretty_table = PrettyTable(field_names=["Source Type", "Resolution"])
|
||||
for source_type, sources in video_sources.items():
|
||||
for source in sources:
|
||||
if (
|
||||
source.get(cv2.CAP_PROP_FRAME_WIDTH) == 0
|
||||
or source.get(cv2.CAP_PROP_FRAME_HEIGHT) == 0
|
||||
):
|
||||
message = "Capture for a source failed as resolution is 0x0.\n"
|
||||
if source_type == "streams":
|
||||
message += "Check if the stream URL is correct and if the stream is online."
|
||||
else:
|
||||
message += "Check if the capture device is connected, working, and not in use by another program."
|
||||
print(message)
|
||||
sys.exit(1)
|
||||
pretty_table.add_row(
|
||||
[
|
||||
source_type,
|
||||
f"{source.get(cv2.CAP_PROP_FRAME_WIDTH)}x{source.get(cv2.CAP_PROP_FRAME_HEIGHT)}",
|
||||
]
|
||||
[source_type, f"{source.get(cv2.CAP_PROP_FRAME_WIDTH)}x{source.get(cv2.CAP_PROP_FRAME_HEIGHT)}"]
|
||||
)
|
||||
print(pretty_table)
|
||||
|
||||
print
|
||||
print("Beginning video capture...")
|
||||
while True:
|
||||
# Grab a single frame of video
|
||||
frames = []
|
||||
# frames = [source.read() for sources in video_sources.values() for source in sources]
|
||||
for list_of_sources in video_sources.values():
|
||||
frames.extend([source.read()[1] for source in list_of_sources])
|
||||
frames_to_show = []
|
||||
for frame in frames:
|
||||
frames_to_show.append(
|
||||
utils.process_footage(
|
||||
frame=frame,
|
||||
run_scale=args.run_scale,
|
||||
view_scale=args.view_scale,
|
||||
ret, frame = video_capture.read()
|
||||
|
||||
frame_to_show = utils.process_footage(
|
||||
frame = frame,
|
||||
run_scale = args.run_scale,
|
||||
view_scale = args.view_scale,
|
||||
|
||||
faces_directory=Path(args.faces_directory),
|
||||
face_confidence_threshold=args.face_confidence_threshold,
|
||||
no_remove_representations=args.no_remove_representations,
|
||||
|
||||
detection_window=args.detection_window,
|
||||
detection_duration=args.detection_duration,
|
||||
notification_window=args.notification_window,
|
||||
|
||||
ntfy_url=args.ntfy_url,
|
||||
|
||||
model=model,
|
||||
detect_object=args.detect_object,
|
||||
object_confidence_threshold=args.object_confidence_threshold,
|
||||
)
|
||||
)
|
||||
# Display the resulting frame
|
||||
# TODO: When multi-camera support is added, this needs to be changed to allow all feeds
|
||||
if not args.no_display:
|
||||
for i, frame_to_show in enumerate(frames_to_show):
|
||||
cv2.imshow(f"Video {i}", frame_to_show)
|
||||
cv2.imshow("Video", frame_to_show)
|
||||
|
||||
# Hit 'q' on the keyboard to quit!
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
|
@ -136,7 +115,7 @@ def main():
|
|||
|
||||
# Release handle to the webcam
|
||||
print("Releasing video capture")
|
||||
[source.release() for sources in video_sources.values() for source in sources]
|
||||
video_capture.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
|
|
|
@ -15,14 +15,16 @@ def set_argparse():
|
|||
else:
|
||||
print("No .env file found")
|
||||
|
||||
|
||||
# One important thing to consider is that most function parameters are optional and have a default value
|
||||
# However, with argparse, those are never used since a argparse always passes something, even if it's None
|
||||
argparser = argparse.ArgumentParser(
|
||||
prog="Wyzely Detect",
|
||||
description="Recognize faces/objects in a video stream (from a webcam or a security camera) and send notifications to your devices", # noqa: E501
|
||||
epilog="For env bool options, setting them to anything except for an empty string will enable them.",
|
||||
epilog=":)",
|
||||
)
|
||||
|
||||
|
||||
video_options = argparser.add_argument_group("Video Options")
|
||||
stream_source = video_options.add_mutually_exclusive_group()
|
||||
stream_source.add_argument(
|
||||
|
@ -30,9 +32,7 @@ def set_argparse():
|
|||
action="append",
|
||||
# If RTSP_URL is in the environment, use it, otherwise just use a blank list
|
||||
# This may cause problems down the road, but if it does, env for this can be removed
|
||||
default=[os.environ["RTSP_URL"]]
|
||||
if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != ""
|
||||
else [],
|
||||
default=[os.environ["RTSP_URL"]] if "RTSP_URL" in os.environ and os.environ["RTSP_URL"] != "" else [],
|
||||
type=str,
|
||||
help="RTSP camera URL",
|
||||
)
|
||||
|
@ -41,9 +41,7 @@ def set_argparse():
|
|||
action="append",
|
||||
# If CAPTURE_DEVICE is in the environment, use it, otherwise just use a blank list
|
||||
# If __main__.py detects that no capture device or remote stream is set, it will default to 0
|
||||
default=[int(os.environ["CAPTURE_DEVICE"])]
|
||||
if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != ""
|
||||
else [],
|
||||
default=[int(os.environ["CAPTURE_DEVICE"])] if "CAPTURE_DEVICE" in os.environ and os.environ["CAPTURE_DEVICE"] != "" else [],
|
||||
type=int,
|
||||
help="Capture device number",
|
||||
)
|
||||
|
@ -71,20 +69,16 @@ def set_argparse():
|
|||
video_options.add_argument(
|
||||
"--no-display",
|
||||
default=os.environ["NO_DISPLAY"]
|
||||
if "NO_DISPLAY" in os.environ
|
||||
and os.environ["NO_DISPLAY"] != ""
|
||||
and os.environ["NO_DISPLAY"].lower() != "false"
|
||||
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
|
||||
else False,
|
||||
action="store_true",
|
||||
help="Don't display the video feed",
|
||||
)
|
||||
video_options.add_argument(
|
||||
"-c",
|
||||
"--force-disable-tensorflow-gpu",
|
||||
'-c',
|
||||
'--force-disable-tensorflow-gpu',
|
||||
default=os.environ["FORCE_DISABLE_TENSORFLOW_GPU"]
|
||||
if "FORCE_DISABLE_TENSORFLOW_GPU" in os.environ
|
||||
and os.environ["FORCE_DISABLE_TENSORFLOW_GPU"] != ""
|
||||
and os.environ["FORCE_DISABLE_TENSORFLOW_GPU"].lower() != "false"
|
||||
if "FORCE_DISABLE_TENSORFLOW_GPU" in os.environ and os.environ["FORCE_DISABLE_TENSORFLOW_GPU"] != ""
|
||||
else False,
|
||||
action="store_true",
|
||||
help="Force disable tensorflow GPU through env since sometimes it's not worth it to install cudnn and whatnot",
|
||||
|
@ -128,6 +122,7 @@ def set_argparse():
|
|||
help="The time (seconds) before another notification can be sent",
|
||||
)
|
||||
|
||||
|
||||
face_recognition = argparser.add_argument_group("Face Recognition options")
|
||||
face_recognition.add_argument(
|
||||
"--faces-directory",
|
||||
|
@ -151,12 +146,13 @@ def set_argparse():
|
|||
default=os.environ["NO_REMOVE_REPRESENTATIONS"]
|
||||
if "NO_REMOVE_REPRESENTATIONS" in os.environ
|
||||
and os.environ["NO_REMOVE_REPRESENTATIONS"] != ""
|
||||
and os.environ["NO_REMOVE_REPRESENTATIONS"].lower() != "false"
|
||||
else False,
|
||||
action="store_true",
|
||||
help="Don't remove representations_<model>.pkl at the start of the program. Greatly improves startup time, but doesn't take into account changes to the faces directory since it was created", # noqa: E501
|
||||
)
|
||||
|
||||
|
||||
|
||||
object_detection = argparser.add_argument_group("Object Detection options")
|
||||
object_detection.add_argument(
|
||||
"--detect-object",
|
||||
|
@ -171,25 +167,11 @@ def set_argparse():
|
|||
default=os.environ["OBJECT_CONFIDENCE_THRESHOLD"]
|
||||
if "OBJECT_CONFIDENCE_THRESHOLD" in os.environ
|
||||
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"] != ""
|
||||
# I think this should always be a str so using lower shouldn't be a problem.
|
||||
# Also, if the first check fails the rest shouldn't be run
|
||||
and os.environ["OBJECT_CONFIDENCE_THRESHOLD"].lower() != "false" else 0.6,
|
||||
else 0.6,
|
||||
type=float,
|
||||
help="The confidence threshold to use",
|
||||
)
|
||||
|
||||
debug = argparser.add_argument_group("Debug options")
|
||||
debug.add_argument(
|
||||
"--fake-second-source",
|
||||
help="Duplicate the first source and use it as a second source. Capture device takes priority.",
|
||||
action="store_true",
|
||||
default=os.environ["FAKE_SECOND_SOURCE"]
|
||||
if "FAKE_SECOND_SOURCE" in os.environ
|
||||
and os.environ["FAKE_SECOND_SOURCE"] != ""
|
||||
and os.environ["FAKE_SECOND_SOURCE"].lower() != "false"
|
||||
else False,
|
||||
)
|
||||
|
||||
# return argparser
|
||||
|
||||
|
||||
|
|
|
@ -2,9 +2,8 @@ import cv2
|
|||
import os
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
# https://stackoverflow.com/a/42121886/18270659
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
|
||||
|
||||
|
||||
from deepface import DeepFace # noqa: E402
|
||||
|
@ -12,7 +11,7 @@ from . import notify # noqa: E402
|
|||
|
||||
first_face_try = True
|
||||
|
||||
# TODO: When multi-camera support is ~~added~~ improved, this will need to be changed so that each camera has its own dict
|
||||
# TODO: When multi-camera support is added, this will need to be changed so that each camera has its own dict
|
||||
objects_and_peoples = {
|
||||
"objects": {},
|
||||
"peoples": {},
|
||||
|
@ -22,27 +21,36 @@ objects_and_peoples = {
|
|||
def process_footage(
|
||||
# Frame
|
||||
frame: np.ndarray = None,
|
||||
|
||||
# scale
|
||||
run_scale: float = None,
|
||||
view_scale: float = None,
|
||||
|
||||
# Face stuff
|
||||
faces_directory: str = None,
|
||||
face_confidence_threshold: float = None,
|
||||
no_remove_representations: bool = False,
|
||||
|
||||
# Timer stuff
|
||||
detection_window: int = None,
|
||||
detection_duration: int = None,
|
||||
notification_window: int = None,
|
||||
|
||||
ntfy_url: str = None,
|
||||
|
||||
# Object stuff
|
||||
# YOLO object
|
||||
model=None,
|
||||
model = None,
|
||||
detect_object: list = None,
|
||||
object_confidence_threshold=None,
|
||||
object_confidence_threshold = None
|
||||
) -> np.ndarray:
|
||||
"""Takes in a frame and processes it"""
|
||||
"""
|
||||
Takes in a frame and processes it
|
||||
"""
|
||||
|
||||
global objects_and_peoples
|
||||
|
||||
|
||||
# Resize frame of video to a smaller size for faster recognition processing
|
||||
run_frame = cv2.resize(frame, (0, 0), fx=run_scale, fy=run_scale)
|
||||
# view_frame = cv2.resize(frame, (0, 0), fx=args.view_scale, fy=args.view_scale)
|
||||
|
@ -52,7 +60,7 @@ def process_footage(
|
|||
path_to_faces = Path(faces_directory)
|
||||
path_to_faces_exists = path_to_faces.is_dir()
|
||||
|
||||
for r in results:
|
||||
for i, r in enumerate(results):
|
||||
# list of dicts with each dict containing a label, x1, y1, x2, y2
|
||||
plot_boxes = []
|
||||
|
||||
|
@ -97,8 +105,7 @@ def process_footage(
|
|||
# Also, make sure that the objects to detect are in the list of objects_and_peoples
|
||||
# If it isn't, print a warning
|
||||
for obj in detect_object:
|
||||
# .keys() shouldn't be needed
|
||||
if obj not in objects_and_peoples["objects"]:
|
||||
if obj not in objects_and_peoples["objects"].keys():
|
||||
print(
|
||||
f"Warning: {obj} is not in the list of objects the model can detect!"
|
||||
)
|
||||
|
@ -147,6 +154,7 @@ def process_footage(
|
|||
ntfy_url=ntfy_url,
|
||||
)
|
||||
|
||||
|
||||
# To debug plotting, use r.plot() to cross reference the bounding boxes drawn by the plot_label() and r.plot()
|
||||
frame_to_show = plot_label(
|
||||
boxes=plot_boxes,
|
||||
|
@ -230,8 +238,7 @@ def recognize_face(
|
|||
|
||||
Returns a single dictonary as currently only 1 face can be detected in each frame
|
||||
Cosine threshold is 0.3, so if the confidence is less than that, it will return None
|
||||
dict conta # Maybe use os.exit() instead?
|
||||
ins the following keys: label, x1, y1, x2, y2
|
||||
dict contains the following keys: label, x1, y1, x2, y2
|
||||
The directory should be structured as follows:
|
||||
faces/
|
||||
name/
|
||||
|
@ -278,11 +285,8 @@ def recognize_face(
|
|||
model_name="ArcFace",
|
||||
detector_backend="opencv",
|
||||
)
|
||||
'''
|
||||
Example dataframe, for reference
|
||||
identity (path to image) | source_x | source_y | source_w | source_h | VGG-Face_cosine (pretty much the confidence \\_('_')_/)
|
||||
'''
|
||||
except ValueError as e:
|
||||
|
||||
except (ValueError) as e:
|
||||
if (
|
||||
str(e)
|
||||
== "Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False." # noqa: E501
|
||||
|
@ -291,8 +295,7 @@ def recognize_face(
|
|||
return None
|
||||
elif (
|
||||
# Check if the error message contains "Validate .jpg or .png files exist in this path."
|
||||
"Validate .jpg or .png files exist in this path."
|
||||
in str(e)
|
||||
"Validate .jpg or .png files exist in this path." in str(e)
|
||||
):
|
||||
# If a verbose/silent flag is added, this should be changed to print only if verbose is true
|
||||
# print("No faces found in database")
|
||||
|
@ -335,3 +338,8 @@ def recognize_face(
|
|||
)
|
||||
return to_return
|
||||
return None
|
||||
|
||||
"""
|
||||
Example dataframe, for reference
|
||||
identity (path to image) | source_x | source_y | source_w | source_h | VGG-Face_cosine (pretty much the confidence \_('_')_/)
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue