Moved processing to `utils/utils.py`
Crashes when another face is introduced
This commit is contained in:
parent
e2e4554031
commit
bec1d5b979
|
@ -7,17 +7,12 @@ import cv2
|
||||||
import torch
|
import torch
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
|
|
||||||
from .utils import notify, utils
|
from .utils import utils
|
||||||
from .utils.cli_args import argparser
|
from .utils.cli_args import argparser
|
||||||
|
|
||||||
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
||||||
args = None
|
args = None
|
||||||
|
|
||||||
objects_and_peoples = {
|
|
||||||
"objects": {},
|
|
||||||
"peoples": {},
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
global objects_and_peoples
|
global objects_and_peoples
|
||||||
|
@ -70,121 +65,32 @@ def main():
|
||||||
while True:
|
while True:
|
||||||
# Grab a single frame of video
|
# Grab a single frame of video
|
||||||
ret, frame = video_capture.read()
|
ret, frame = video_capture.read()
|
||||||
# Resize frame of video to a smaller size for faster recognition processing
|
|
||||||
run_frame = cv2.resize(frame, (0, 0), fx=args.run_scale, fy=args.run_scale)
|
|
||||||
# view_frame = cv2.resize(frame, (0, 0), fx=args.view_scale, fy=args.view_scale)
|
|
||||||
|
|
||||||
results = model(run_frame, verbose=False)
|
frame_to_show = utils.process_footage(
|
||||||
|
frame = frame,
|
||||||
|
run_scale = args.run_scale,
|
||||||
|
view_scale = args.view_scale,
|
||||||
|
|
||||||
path_to_faces = Path(args.faces_directory)
|
faces_directory=Path(args.faces_directory),
|
||||||
path_to_faces_exists = path_to_faces.is_dir()
|
face_confidence_threshold=args.face_confidence_threshold,
|
||||||
|
no_remove_representations=args.no_remove_representations,
|
||||||
|
|
||||||
for i, r in enumerate(results):
|
detection_window=args.detection_window,
|
||||||
# list of dicts with each dict containing a label, x1, y1, x2, y2
|
detection_duration=args.detection_duration,
|
||||||
plot_boxes = []
|
notification_window=args.notification_window,
|
||||||
|
|
||||||
# The following is stuff for people
|
ntfy_url=args.ntfy_url,
|
||||||
# This is still in the for loop as each result, no matter if anything is detected, will be present.
|
|
||||||
# Thus, there will always be one result (r)
|
|
||||||
|
|
||||||
# Only run if path_to_faces exists
|
model=model,
|
||||||
# May be better to check every iteration, but this also works
|
detect_object=args.detect_object,
|
||||||
if path_to_faces_exists:
|
object_confidence_threshold=args.object_confidence_threshold,
|
||||||
if face_details := utils.recognize_face(
|
)
|
||||||
path_to_directory=path_to_faces,
|
# Display the resulting frame
|
||||||
run_frame=run_frame,
|
# TODO: When multi-camera support is added, this needs to be changed to allow all feeds
|
||||||
min_confidence=args.face_confidence_threshold,
|
if not args.no_display:
|
||||||
no_remove_representations=args.no_remove_representations,
|
# When a face isn't recognized: "cv2.error: OpenCV(4.8.1) D:\a\opencv-python\opencv-python\opencv\modules\highgui\src\window.cpp:971: error: (-215:Assertion failed) size.width>0 && size.height>0 in function 'cv::imshow'"
|
||||||
):
|
# Seems to be because frame_to_show is null
|
||||||
plot_boxes.append(face_details)
|
cv2.imshow("Video", frame_to_show)
|
||||||
objects_and_peoples = notify.thing_detected(
|
|
||||||
thing_name=face_details["label"],
|
|
||||||
objects_and_peoples=objects_and_peoples,
|
|
||||||
detection_type="peoples",
|
|
||||||
detection_window=args.detection_window,
|
|
||||||
detection_duration=args.detection_duration,
|
|
||||||
notification_window=args.notification_window,
|
|
||||||
ntfy_url=args.ntfy_url,
|
|
||||||
)
|
|
||||||
|
|
||||||
# The following is stuff for objects
|
|
||||||
# Setup dictionary of object names
|
|
||||||
if (
|
|
||||||
objects_and_peoples["objects"] == {}
|
|
||||||
or objects_and_peoples["objects"] is None
|
|
||||||
):
|
|
||||||
for name in r.names.values():
|
|
||||||
objects_and_peoples["objects"][name] = {
|
|
||||||
"last_detection_time": None,
|
|
||||||
"detection_duration": None,
|
|
||||||
# "first_detection_time": None,
|
|
||||||
"last_notification_time": None,
|
|
||||||
}
|
|
||||||
# Also, make sure that the objects to detect are in the list of objects_and_peoples
|
|
||||||
# If it isn't, print a warning
|
|
||||||
for obj in args.detect_object:
|
|
||||||
if obj not in objects_and_peoples:
|
|
||||||
print(
|
|
||||||
f"Warning: {obj} is not in the list of objects the model can detect!"
|
|
||||||
)
|
|
||||||
|
|
||||||
for box in r.boxes:
|
|
||||||
# Get the name of the object
|
|
||||||
class_id = r.names[box.cls[0].item()]
|
|
||||||
# Get the coordinates of the object
|
|
||||||
cords = box.xyxy[0].tolist()
|
|
||||||
cords = [round(x) for x in cords]
|
|
||||||
# Get the confidence
|
|
||||||
conf = round(box.conf[0].item(), 2)
|
|
||||||
# Print it out, adding a spacer between each object
|
|
||||||
# print("Object type:", class_id)
|
|
||||||
# print("Coordinates:", cords)
|
|
||||||
# print("Probability:", conf)
|
|
||||||
# print("---")
|
|
||||||
|
|
||||||
# Now do stuff (if conf > 0.5)
|
|
||||||
if conf < args.object_confidence_threshold or (
|
|
||||||
class_id not in args.detect_object and args.detect_object != []
|
|
||||||
):
|
|
||||||
# If the confidence is too low
|
|
||||||
# or if the object is not in the list of objects to detect and the list of objects to detect is not empty
|
|
||||||
# then skip this iteration
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Add the object to the list of objects to plot
|
|
||||||
plot_boxes.append(
|
|
||||||
{
|
|
||||||
"label": class_id,
|
|
||||||
"x1": cords[0],
|
|
||||||
"y1": cords[1],
|
|
||||||
"x2": cords[2],
|
|
||||||
"y2": cords[3],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
objects_and_peoples = notify.thing_detected(
|
|
||||||
thing_name=class_id,
|
|
||||||
objects_and_peoples=objects_and_peoples,
|
|
||||||
detection_type="objects",
|
|
||||||
detection_window=args.detection_window,
|
|
||||||
detection_duration=args.detection_duration,
|
|
||||||
notification_window=args.notification_window,
|
|
||||||
ntfy_url=args.ntfy_url,
|
|
||||||
)
|
|
||||||
|
|
||||||
# To debug plotting, use r.plot() to cross reference the bounding boxes drawn by the plot_label() and r.plot()
|
|
||||||
frame_to_show = utils.plot_label(
|
|
||||||
boxes=plot_boxes,
|
|
||||||
full_frame=frame,
|
|
||||||
# full_frame=r.plot(),
|
|
||||||
run_scale=args.run_scale,
|
|
||||||
view_scale=args.view_scale,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Display the resulting frame
|
|
||||||
# cv2.imshow("", r)
|
|
||||||
if not args.no_display:
|
|
||||||
cv2.imshow(f"Video{i}", frame_to_show)
|
|
||||||
|
|
||||||
# Hit 'q' on the keyboard to quit!
|
# Hit 'q' on the keyboard to quit!
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
|
|
|
@ -92,6 +92,7 @@ def set_argparse():
|
||||||
help="The URL to send notifications to",
|
help="The URL to send notifications to",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Various timers
|
||||||
timers = argparser.add_argument_group("Timers")
|
timers = argparser.add_argument_group("Timers")
|
||||||
timers.add_argument(
|
timers.add_argument(
|
||||||
"--detection-duration",
|
"--detection-duration",
|
||||||
|
|
|
@ -2,9 +2,165 @@ import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from deepface import DeepFace
|
from deepface import DeepFace
|
||||||
|
from . import notify
|
||||||
|
|
||||||
first_face_try = True
|
first_face_try = True
|
||||||
|
|
||||||
|
# TODO: When multi-camera support is added, this will need to be changed so that each camera has its own dict
|
||||||
|
objects_and_peoples = {
|
||||||
|
"objects": {},
|
||||||
|
"peoples": {},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def process_footage(
|
||||||
|
# Frame
|
||||||
|
frame: np.ndarray = None,
|
||||||
|
|
||||||
|
# scale
|
||||||
|
run_scale: float = None,
|
||||||
|
view_scale: float = None,
|
||||||
|
|
||||||
|
# Face stuff
|
||||||
|
faces_directory: str = None,
|
||||||
|
face_confidence_threshold: float = None,
|
||||||
|
no_remove_representations: bool = False,
|
||||||
|
|
||||||
|
# Timer stuff
|
||||||
|
detection_window: int = None,
|
||||||
|
detection_duration: int = None,
|
||||||
|
notification_window: int = None,
|
||||||
|
|
||||||
|
ntfy_url: str = None,
|
||||||
|
|
||||||
|
# Object stuff
|
||||||
|
# YOLO object
|
||||||
|
model = None,
|
||||||
|
detect_object: list = None,
|
||||||
|
object_confidence_threshold = None
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Takes in a frame and processes it
|
||||||
|
"""
|
||||||
|
|
||||||
|
global objects_and_peoples
|
||||||
|
|
||||||
|
|
||||||
|
# Resize frame of video to a smaller size for faster recognition processing
|
||||||
|
run_frame = cv2.resize(frame, (0, 0), fx=run_scale, fy=run_scale)
|
||||||
|
# view_frame = cv2.resize(frame, (0, 0), fx=args.view_scale, fy=args.view_scale)
|
||||||
|
|
||||||
|
results = model(run_frame, verbose=False)
|
||||||
|
|
||||||
|
path_to_faces = Path(faces_directory)
|
||||||
|
path_to_faces_exists = path_to_faces.is_dir()
|
||||||
|
|
||||||
|
for i, r in enumerate(results):
|
||||||
|
# list of dicts with each dict containing a label, x1, y1, x2, y2
|
||||||
|
plot_boxes = []
|
||||||
|
|
||||||
|
# The following is stuff for people
|
||||||
|
# This is still in the for loop as each result, no matter if anything is detected, will be present.
|
||||||
|
# Thus, there will always be one result (r)
|
||||||
|
|
||||||
|
# Only run if path_to_faces exists
|
||||||
|
# May be better to check every iteration, but this also works
|
||||||
|
if path_to_faces_exists:
|
||||||
|
if face_details := recognize_face(
|
||||||
|
path_to_directory=path_to_faces,
|
||||||
|
run_frame=run_frame,
|
||||||
|
# Perhaps make these names match?
|
||||||
|
min_confidence=face_confidence_threshold,
|
||||||
|
no_remove_representations=no_remove_representations,
|
||||||
|
):
|
||||||
|
plot_boxes.append(face_details)
|
||||||
|
objects_and_peoples = notify.thing_detected(
|
||||||
|
thing_name=face_details["label"],
|
||||||
|
objects_and_peoples=objects_and_peoples,
|
||||||
|
detection_type="peoples",
|
||||||
|
detection_window=detection_window,
|
||||||
|
detection_duration=detection_duration,
|
||||||
|
notification_window=notification_window,
|
||||||
|
ntfy_url=ntfy_url,
|
||||||
|
)
|
||||||
|
|
||||||
|
# The following is stuff for objects
|
||||||
|
# Setup dictionary of object names
|
||||||
|
if (
|
||||||
|
objects_and_peoples["objects"] == {}
|
||||||
|
or objects_and_peoples["objects"] is None
|
||||||
|
):
|
||||||
|
for name in r.names.values():
|
||||||
|
objects_and_peoples["objects"][name] = {
|
||||||
|
"last_detection_time": None,
|
||||||
|
"detection_duration": None,
|
||||||
|
# "first_detection_time": None,
|
||||||
|
"last_notification_time": None,
|
||||||
|
}
|
||||||
|
# Also, make sure that the objects to detect are in the list of objects_and_peoples
|
||||||
|
# If it isn't, print a warning
|
||||||
|
for obj in detect_object:
|
||||||
|
if obj not in objects_and_peoples:
|
||||||
|
print(
|
||||||
|
f"Warning: {obj} is not in the list of objects the model can detect!"
|
||||||
|
)
|
||||||
|
|
||||||
|
for box in r.boxes:
|
||||||
|
# Get the name of the object
|
||||||
|
class_id = r.names[box.cls[0].item()]
|
||||||
|
# Get the coordinates of the object
|
||||||
|
cords = box.xyxy[0].tolist()
|
||||||
|
cords = [round(x) for x in cords]
|
||||||
|
# Get the confidence
|
||||||
|
conf = round(box.conf[0].item(), 2)
|
||||||
|
# Print it out, adding a spacer between each object
|
||||||
|
# print("Object type:", class_id)
|
||||||
|
# print("Coordinates:", cords)
|
||||||
|
# print("Probability:", conf)
|
||||||
|
# print("---")
|
||||||
|
|
||||||
|
# Now do stuff (if conf > 0.5)
|
||||||
|
if conf < object_confidence_threshold or (
|
||||||
|
class_id not in detect_object and detect_object != []
|
||||||
|
):
|
||||||
|
# If the confidence is too low
|
||||||
|
# or if the object is not in the list of objects to detect and the list of objects to detect is not empty
|
||||||
|
# then skip this iteration
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Add the object to the list of objects to plot
|
||||||
|
plot_boxes.append(
|
||||||
|
{
|
||||||
|
"label": class_id,
|
||||||
|
"x1": cords[0],
|
||||||
|
"y1": cords[1],
|
||||||
|
"x2": cords[2],
|
||||||
|
"y2": cords[3],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
objects_and_peoples = notify.thing_detected(
|
||||||
|
thing_name=class_id,
|
||||||
|
objects_and_peoples=objects_and_peoples,
|
||||||
|
detection_type="objects",
|
||||||
|
detection_window=detection_window,
|
||||||
|
detection_duration=detection_duration,
|
||||||
|
notification_window=notification_window,
|
||||||
|
ntfy_url=ntfy_url,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# To debug plotting, use r.plot() to cross reference the bounding boxes drawn by the plot_label() and r.plot()
|
||||||
|
frame_to_show = plot_label(
|
||||||
|
boxes=plot_boxes,
|
||||||
|
full_frame=frame,
|
||||||
|
# full_frame=r.plot(),
|
||||||
|
run_scale=run_scale,
|
||||||
|
view_scale=view_scale,
|
||||||
|
)
|
||||||
|
# Unsure if this should also return the objects_and_peoples dict
|
||||||
|
return frame_to_show
|
||||||
|
|
||||||
|
|
||||||
def plot_label(
|
def plot_label(
|
||||||
# list of dicts with each dict containing a label, x1, y1, x2, y2
|
# list of dicts with each dict containing a label, x1, y1, x2, y2
|
||||||
|
@ -18,7 +174,7 @@ def plot_label(
|
||||||
# So the coordinates will be scaled appropriately when coming from run_frame
|
# So the coordinates will be scaled appropriately when coming from run_frame
|
||||||
view_scale: float = None,
|
view_scale: float = None,
|
||||||
font: int = cv2.FONT_HERSHEY_SIMPLEX,
|
font: int = cv2.FONT_HERSHEY_SIMPLEX,
|
||||||
):
|
) -> np.ndarray:
|
||||||
# x1 and y1 are the top left corner of the box
|
# x1 and y1 are the top left corner of the box
|
||||||
# x2 and y2 are the bottom right corner of the box
|
# x2 and y2 are the bottom right corner of the box
|
||||||
# Example scaling: full_frame: 1 run_frame: 0.5 view_frame: 0.25
|
# Example scaling: full_frame: 1 run_frame: 0.5 view_frame: 0.25
|
||||||
|
@ -176,6 +332,7 @@ def recognize_face(
|
||||||
f"Cosine similarity: {cosine_similarity}, filname: {path_to_image.name}, to_return: {to_return}"
|
f"Cosine similarity: {cosine_similarity}, filname: {path_to_image.name}, to_return: {to_return}"
|
||||||
)
|
)
|
||||||
return to_return
|
return to_return
|
||||||
|
return None
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Example dataframe, for reference
|
Example dataframe, for reference
|
||||||
|
|
Loading…
Reference in New Issue