Fixed Docker support and updated README.md

This commit is contained in:
slashtechno 2023-10-14 22:31:48 -05:00
parent 1d17bb629b
commit 8cc9054e67
Signed by: slashtechno
GPG Key ID: 8EC1D9D9286C2B17
9 changed files with 451 additions and 174 deletions

42
.Dockerfile.old Normal file
View File

@ -0,0 +1,42 @@
FROM python:3.10-bullseye
# Install Dlib (for face_recognition)
RUN apt-get -y update && apt-get install -y --fix-missing \
build-essential \
cmake \
gfortran \
git \
wget \
curl \
graphicsmagick \
libgraphicsmagick1-dev \
libatlas-base-dev \
libavcodec-dev \
libavformat-dev \
libgtk2.0-dev \
libjpeg-dev \
liblapack-dev \
libswscale-dev \
pkg-config \
python3-dev \
python3-numpy \
software-properties-common \
zip
RUN apt-get clean
RUN rm -rf /tmp/* /var/tmp/*
ENV CFLAGS=-static
# Install dos2unix
# RUN apt-get install -y dos2unix
# Upgrade pip
RUN pip3 install --upgrade pip
# Copy directory to container
WORKDIR /app
COPY . ./
# Run dos2unix on all files in /app
# RUN dos2unix /app/*
# Install from requirements.txt
RUN pip3 install -r requirements.txt
# Install wait-for-it so this can easily be used with docker-compose
# Example: command: ["./wait-for-it.sh", "bridge:8554", "--", "python", "main.py"]
RUN wget https://raw.githubusercontent.com/vishnubob/wait-for-it/master/wait-for-it.sh && chmod +x wait-for-it.sh && mv wait-for-it.sh /bin
CMD ["python3", "main.py"]

View File

@ -1 +1,3 @@
.config/
Dockerfile
.venv
docker-compose.yml

View File

@ -25,7 +25,7 @@ jobs:
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a
uses: docker/login-action@v3.0.0
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}

View File

@ -1,42 +1,12 @@
FROM python:3.10-bullseye
FROM python:3.10.5-buster
RUN apt update && apt install libgl1 -y
RUN pip install poetry
# Install Dlib (for face_recognition)
RUN apt-get -y update && apt-get install -y --fix-missing \
build-essential \
cmake \
gfortran \
git \
wget \
curl \
graphicsmagick \
libgraphicsmagick1-dev \
libatlas-base-dev \
libavcodec-dev \
libavformat-dev \
libgtk2.0-dev \
libjpeg-dev \
liblapack-dev \
libswscale-dev \
pkg-config \
python3-dev \
python3-numpy \
software-properties-common \
zip
RUN apt-get clean
RUN rm -rf /tmp/* /var/tmp/*
ENV CFLAGS=-static
# Install dos2unix
# RUN apt-get install -y dos2unix
# Upgrade pip
RUN pip3 install --upgrade pip
# Copy directory to container
WORKDIR /app
COPY . ./
# Run dos2unix on all files in /app
# RUN dos2unix /app/*
# Install from requirements.txt
RUN pip3 install -r requirements.txt
# Install wait-for-it so this can easily be used with docker-compose
# Example: command: ["./wait-for-it.sh", "bridge:8554", "--", "python", "main.py"]
RUN wget https://raw.githubusercontent.com/vishnubob/wait-for-it/master/wait-for-it.sh && chmod +x wait-for-it.sh && mv wait-for-it.sh /bin
CMD ["python3", "main.py"]
COPY . .
RUN poetry install
ENTRYPOINT ["poetry", "run", "python", "-m", "set_detect_notify"]

View File

@ -1,21 +1,54 @@
# Wyze Face Recognition
Recognize faces in Wyze Cam footage and send notifications to your phone (or other devices)
# Set, Detect, Notify
Recognize faces/objects in (Wyze Cam) footage and send notifications to your phone (or other devices)
## Pre-requisites
* Docker
* Docker Compose
* A Wyze Cam
### Features
- Recognize objects
- Recognize faces
- Send notifications to your phone (or other devices) using [ntfy](https://ntfy.sh/)
- Optionally, run headless with Docker
- Either use a webcam or an RTSP feed
- Use [mrlt8/docker-wyze-bridge](https://github.com/mrlt8/docker-wyze-bridge) to get RTSP feeds from Wyze Cams
## What's not needed
* A Wyze Cam subscription
## How to use
1. Clone this repo
` git clone https://github.com/slackner/wyze-face-recognition.git`
2. Add images to the `config` directory
3. Copy `config/config.json.example` to `config/config.json` and edit the faces array to match the images you added, and the face names
4. Either set the `WYZE_EMAIL` and `WYZE_PASSWORD` environment variables, or edit `docker-compose.yml` and add your Wyze credentials
5. Run `docker-compose up -d`
## Prerequisites
### Poetry/Python
- Camera, either a webcam or a Wyze Cam
- All RTSP feeds _should_ work, however.
- Python
- Poetry
### Docker
- A Wyze Cam
- Any other RTSP feed _should_ work, as mentioned above
- Python
- Poetry
## What's not required
- A Wyze subscription
## Usage
### Installation
1. Clone this repo with `git clone https://github.com/slashtechno/wyze-face-recognition.git`
2. `cd` into the cloned repository
3. Then, either install with [Poetry](https://python-poetry.org/) or run with Docker
#### Docker
1. Modify to `docker-compose.yml` to achieve desired configuration
2. Run in the background with `docker compose up -d
#### Poetry
1. `poetry install`
2. `poetry run -- set-detect-notify`
### Configuration
The following are some basic CLI options. Most flags have environment variable equivalents which can be helpful when using Docker.
- For face recognition, put images of faces in subdirectories `./faces` (this can be changed with `--faces-directory`)
- Keep in mind, on the first run, face rec
- By default, notifications are sent for all objects. This can be changed with one or more occurrences of `--detect-object` to specify which objects to detect
- Currently, all classes in the [COCO](https://cocodataset.org/) dataset can be detected
- To specify where notifications are sent, specify a [ntfy](https://ntfy.sh/) URL with `--ntfy-url`
- To configure the program when using Docker, edit `docker-compose.yml` and/or set environment variables.
- **For further information, use `--help`**
### How to uninstall
1. Run `docker-compose down` in the `wyze-face-recognition` directory
- If you used Docker, run `docker-compose down --rmi all` in the cloned repository
- If you used Poetry, just delete the virtual environment and then the cloned repository

View File

@ -6,19 +6,21 @@ services:
container_name: bridge-wyze
restart: unless-stopped
image: mrlt8/wyze-bridge:latest
ports:
- 1935:1935 # RTMP
- 8554:8554 # RTSP
- 8888:8888 # HLS
- 5000:5000 # WEB-UI
# I think we can remove the ports, since we're using the network
# Just an unnecesary security risk
# ports:
# - 1935:1935 # RTMP
# - 8554:8554 # RTSP (this is really the only one we need)
# - 8888:8888 # HLS
# - 5000:5000 # WEB-UI
environment:
- WYZE_EMAIL=${WYZE_EMAIL} # Replace with wyze email
- WYZE_PASSWORD=${WYZE_PASSWORD} # Replace with wyze password
networks:
all:
aliases:
- bridge
- wyze-bridge
# aliases:
# - bridge
# - wyze-bridge
ntfy:
image: binwiederhier/ntfy
container_name: ntfy-wyze
@ -37,28 +39,33 @@ services:
facial_recognition:
container_name: face-recognition-wyze
restart: unless-stopped
image: ghcr.io/slashtechno/wyze_face_recognition:latest
# image: ghcr.io/slashtechno/wyze_face_recognition:latest
build:
context: .
dockerfile: Dockerfile
volumes:
# ./config is mounted as /app/config
- ./config:/app/config
- ./faces:/app/faces
networks:
all:
environment:
- RUN_BY_COMPOSE=true
- URL=rtsp://bridge:8554/cv
- NO_DISPLAY=true
- NTFY_URL=http://ntfy:80/set-detect-notify
depends_on:
- bridge
# Use curl to check if the rtsp stream is up, then run the face recognition
command: >
/bin/sh -c "
while true; do
curl -s http://bridge:8888/cv/0.m3u8 > /dev/null
if [ $? -eq 0 ]; then
echo 'Stream is up, running face recognition'
python3 /app/main.py
else
echo 'Stream is down, waiting 5 seconds'
sleep 5
fi
done
"
# command: >
# /bin/sh -c "
# while true; do
# curl -s http://bridge:8888/cv/0.m3u8 > /dev/null
# if [ $? -eq 0 ]; then
# echo 'Stream is up, running face recognition'
# python3 /app/main.py
# else
# echo 'Stream is down, waiting 5 seconds'
# sleep 5
# fi
# done
# "
tty: true

374
poetry.lock generated
View File

@ -396,6 +396,35 @@ files = [
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "cmake"
version = "3.27.7"
description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software"
optional = false
python-versions = "*"
files = [
{file = "cmake-3.27.7-py2.py3-none-macosx_10_10_universal2.macosx_10_10_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:d582ef3e9ff0bd113581c1a32e881d1c2f9a34d2de76c93324a28593a76433db"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2010_i686.manylinux_2_12_i686.whl", hash = "sha256:8056c99e371ff57229df2068364d7c32fea716cb53b4675f639edfb62663decf"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:68983b09de633fc1ce6ab6bce9a25bfa181e41598e7c6bc0a6c0108773ee01cb"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8bd1e1fa4fc8de7605c663d9408dceb649112f855aab05cca31fdb72e4d78364"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:c981aafcca2cd7210bd210ec75710c0f34e1fde1998cdcab812e4133e3ab615d"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:1b9067ce0251cba3d4c018f2e1577ba9078e9c1eff6ad607ad5ce867843d4571"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b8a2fcb619b89d1cce7b52828316de9a1f27f0c90c2e39d1eae886428c8ee8c6"},
{file = "cmake-3.27.7-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:499b38c77d52fb1964dbb38d0228fed246263a181939a8e753fde8ca227c8e1e"},
{file = "cmake-3.27.7-py2.py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:2fb48c780f1a6a3d19e785ebbb754be79d369e25a1cb81043fab049e709564da"},
{file = "cmake-3.27.7-py2.py3-none-musllinux_1_1_i686.whl", hash = "sha256:7bf96237ba11ce2437dc5e071d96b510120a1be4708c631a64b2f38fb46bbd77"},
{file = "cmake-3.27.7-py2.py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:009058bdf4f488709f38eaa5dd0ef0f89c6b9c6b6edd9d5b475a308ef75f80bb"},
{file = "cmake-3.27.7-py2.py3-none-musllinux_1_1_s390x.whl", hash = "sha256:591f6b056527aefec009bc61a388776b2fc62444deb0038112a471031f61aeca"},
{file = "cmake-3.27.7-py2.py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:bd40d46dbad3555d5b3ce054bef24b85f256b19139493773751ab6f2b71c1219"},
{file = "cmake-3.27.7-py2.py3-none-win32.whl", hash = "sha256:bdbf0256f554f68c7b1d9740f5d059daf875b685c81a479cbe69038e84eb2fb9"},
{file = "cmake-3.27.7-py2.py3-none-win_amd64.whl", hash = "sha256:810e592b606d05a3080a9c19ea839b13226f62cae447a22485b2365782f6b926"},
{file = "cmake-3.27.7-py2.py3-none-win_arm64.whl", hash = "sha256:72289361866314f73be2ae63ddee224ff70223dcef9feb66d0072bf17e245564"},
{file = "cmake-3.27.7.tar.gz", hash = "sha256:9f4a7c7be2a25de5901f045618f41b833ea6c0f647115201d38e4fdf7e2815bc"},
]
[package.extras]
test = ["coverage (>=4.2)", "flake8 (>=3.0.4)", "path.py (>=11.5.0)", "pytest (>=3.0.3)", "pytest-cov (>=2.4.0)", "pytest-runner (>=2.9)", "pytest-virtualenv (>=1.7.0)", "scikit-build (>=0.10.0)", "setuptools (>=28.0.0)", "virtualenv (>=15.0.3)", "wheel"]
[[package]]
name = "colorama"
version = "0.4.6"
@ -757,41 +786,6 @@ ufo = ["fs (>=2.2.0,<3)"]
unicode = ["unicodedata2 (>=15.0.0)"]
woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
[[package]]
name = "fsspec"
version = "2023.9.2"
description = "File-system specification"
optional = false
python-versions = ">=3.8"
files = [
{file = "fsspec-2023.9.2-py3-none-any.whl", hash = "sha256:603dbc52c75b84da501b9b2ec8c11e1f61c25984c4a0dda1f129ef391fbfc9b4"},
{file = "fsspec-2023.9.2.tar.gz", hash = "sha256:80bfb8c70cc27b2178cc62a935ecf242fc6e8c3fb801f9c571fc01b1e715ba7d"},
]
[package.extras]
abfs = ["adlfs"]
adl = ["adlfs"]
arrow = ["pyarrow (>=1)"]
dask = ["dask", "distributed"]
devel = ["pytest", "pytest-cov"]
dropbox = ["dropbox", "dropboxdrivefs", "requests"]
full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"]
fuse = ["fusepy"]
gcs = ["gcsfs"]
git = ["pygit2"]
github = ["requests"]
gs = ["gcsfs"]
gui = ["panel"]
hdfs = ["pyarrow (>=1)"]
http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"]
libarchive = ["libarchive-c"]
oci = ["ocifs"]
s3 = ["s3fs"]
sftp = ["paramiko"]
smb = ["smbprotocol"]
ssh = ["paramiko"]
tqdm = ["tqdm"]
[[package]]
name = "gast"
version = "0.5.4"
@ -1428,6 +1422,16 @@ files = [
{file = "libclang-16.0.6.tar.gz", hash = "sha256:4acdde39dfe410c877b4ccc0d4b57eb952100e4ee26bbdf6cfdb88e2033a7d31"},
]
[[package]]
name = "lit"
version = "17.0.2"
description = "A Software Testing Tool"
optional = false
python-versions = "*"
files = [
{file = "lit-17.0.2.tar.gz", hash = "sha256:d6a551eab550f81023c82a260cd484d63970d2be9fd7588111208e7d2ff62212"},
]
[[package]]
name = "markdown"
version = "3.5"
@ -1807,6 +1811,164 @@ files = [
{file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
]
[[package]]
name = "nvidia-cublas-cu11"
version = "11.10.3.66"
description = "CUBLAS native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"},
{file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cuda-cupti-cu11"
version = "11.7.101"
description = "CUDA profiling tools runtime libs."
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:e0cfd9854e1f2edaa36ca20d21cd0bdd5dcfca4e3b9e130a082e05b33b6c5895"},
{file = "nvidia_cuda_cupti_cu11-11.7.101-py3-none-win_amd64.whl", hash = "sha256:7cc5b8f91ae5e1389c3c0ad8866b3b016a175e827ea8f162a672990a402ab2b0"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cuda-nvrtc-cu11"
version = "11.7.99"
description = "NVRTC native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"},
{file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"},
{file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cuda-runtime-cu11"
version = "11.7.99"
description = "CUDA Runtime native Libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"},
{file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cudnn-cu11"
version = "8.5.0.96"
description = "cuDNN runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"},
{file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cufft-cu11"
version = "10.9.0.58"
description = "CUFFT native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl", hash = "sha256:222f9da70c80384632fd6035e4c3f16762d64ea7a843829cb278f98b3cb7dd81"},
{file = "nvidia_cufft_cu11-10.9.0.58-py3-none-win_amd64.whl", hash = "sha256:c4d316f17c745ec9c728e30409612eaf77a8404c3733cdf6c9c1569634d1ca03"},
]
[[package]]
name = "nvidia-curand-cu11"
version = "10.2.10.91"
description = "CURAND native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl", hash = "sha256:eecb269c970fa599a2660c9232fa46aaccbf90d9170b96c462e13bcb4d129e2c"},
{file = "nvidia_curand_cu11-10.2.10.91-py3-none-win_amd64.whl", hash = "sha256:f742052af0e1e75523bde18895a9ed016ecf1e5aa0ecddfcc3658fd11a1ff417"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cusolver-cu11"
version = "11.4.0.1"
description = "CUDA solver native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:72fa7261d755ed55c0074960df5904b65e2326f7adce364cbe4945063c1be412"},
{file = "nvidia_cusolver_cu11-11.4.0.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:700b781bfefd57d161443aff9ace1878584b93e0b2cfef3d6e9296d96febbf99"},
{file = "nvidia_cusolver_cu11-11.4.0.1-py3-none-win_amd64.whl", hash = "sha256:00f70b256add65f8c1eb3b6a65308795a93e7740f6df9e273eccbba770d370c4"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cusparse-cu11"
version = "11.7.4.91"
description = "CUSPARSE native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl", hash = "sha256:a3389de714db63321aa11fbec3919271f415ef19fda58aed7f2ede488c32733d"},
{file = "nvidia_cusparse_cu11-11.7.4.91-py3-none-win_amd64.whl", hash = "sha256:304a01599534f5186a8ed1c3756879282c72c118bc77dd890dc1ff868cad25b9"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-nccl-cu11"
version = "2.14.3"
description = "NVIDIA Collective Communication Library (NCCL) Runtime"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl", hash = "sha256:5e5534257d1284b8e825bc3a182c6f06acd6eb405e9f89d49340e98cd8f136eb"},
]
[[package]]
name = "nvidia-nvtx-cu11"
version = "11.7.91"
description = "NVIDIA Tools Extension"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl", hash = "sha256:b22c64eee426a62fc00952b507d6d29cf62b4c9df7a480fcc417e540e05fd5ac"},
{file = "nvidia_nvtx_cu11-11.7.91-py3-none-win_amd64.whl", hash = "sha256:dfd7fcb2a91742513027d63a26b757f38dd8b07fecac282c4d132a9d373ff064"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "oauthlib"
version = "3.2.2"
@ -3063,39 +3225,54 @@ files = [
[[package]]
name = "torch"
version = "2.1.0"
version = "2.0.0"
description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
optional = false
python-versions = ">=3.8.0"
files = [
{file = "torch-2.1.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:bf57f8184b2c317ef81fb33dc233ce4d850cd98ef3f4a38be59c7c1572d175db"},
{file = "torch-2.1.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:a04a0296d47f28960f51c18c5489a8c3472f624ec3b5bcc8e2096314df8c3342"},
{file = "torch-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:0bd691efea319b14ef239ede16d8a45c246916456fa3ed4f217d8af679433cc6"},
{file = "torch-2.1.0-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:101c139152959cb20ab370fc192672c50093747906ee4ceace44d8dd703f29af"},
{file = "torch-2.1.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:a6b7438a90a870e4cdeb15301519ae6c043c883fcd224d303c5b118082814767"},
{file = "torch-2.1.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:2224622407ca52611cbc5b628106fde22ed8e679031f5a99ce286629fc696128"},
{file = "torch-2.1.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8132efb782cd181cc2dcca5e58effbe4217cdb2581206ac71466d535bf778867"},
{file = "torch-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:5c3bfa91ce25ba10116c224c59d5b64cdcce07161321d978bd5a1f15e1ebce72"},
{file = "torch-2.1.0-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:601b0a2a9d9233fb4b81f7d47dca9680d4f3a78ca3f781078b6ad1ced8a90523"},
{file = "torch-2.1.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:3cd1dedff13884d890f18eea620184fb4cd8fd3c68ce3300498f427ae93aa962"},
{file = "torch-2.1.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:fb7bf0cc1a3db484eb5d713942a93172f3bac026fcb377a0cd107093d2eba777"},
{file = "torch-2.1.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:761822761fffaa1c18a62c5deb13abaa780862577d3eadc428f1daa632536905"},
{file = "torch-2.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:458a6d6d8f7d2ccc348ac4d62ea661b39a3592ad15be385bebd0a31ced7e00f4"},
{file = "torch-2.1.0-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:c8bf7eaf9514465e5d9101e05195183470a6215bb50295c61b52302a04edb690"},
{file = "torch-2.1.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05661c32ec14bc3a157193d0f19a7b19d8e61eb787b33353cad30202c295e83b"},
{file = "torch-2.1.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:556d8dd3e0c290ed9d4d7de598a213fb9f7c59135b4fee144364a8a887016a55"},
{file = "torch-2.1.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:de7d63c6ecece118684415a3dbd4805af4a4c1ee1490cccf7405d8c240a481b4"},
{file = "torch-2.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:2419cf49aaf3b2336c7aa7a54a1b949fa295b1ae36f77e2aecb3a74e3a947255"},
{file = "torch-2.1.0-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6ad491e70dbe4288d17fdbfc7fbfa766d66cbe219bc4871c7a8096f4a37c98df"},
{file = "torch-2.1.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:421739685eba5e0beba42cb649740b15d44b0d565c04e6ed667b41148734a75b"},
{file = "torch-2.0.0-1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c9090bda7d2eeeecd74f51b721420dbeb44f838d4536cc1b284e879417e3064a"},
{file = "torch-2.0.0-1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:bd42db2a48a20574d2c33489e120e9f32789c4dc13c514b0c44272972d14a2d7"},
{file = "torch-2.0.0-1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8969aa8375bcbc0c2993e7ede0a7f889df9515f18b9b548433f412affed478d9"},
{file = "torch-2.0.0-1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ab2da16567cb55b67ae39e32d520d68ec736191d88ac79526ca5874754c32203"},
{file = "torch-2.0.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:7a9319a67294ef02459a19738bbfa8727bb5307b822dadd708bc2ccf6c901aca"},
{file = "torch-2.0.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:9f01fe1f6263f31bd04e1757946fd63ad531ae37f28bb2dbf66f5c826ee089f4"},
{file = "torch-2.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:527f4ae68df7b8301ee6b1158ca56350282ea633686537b30dbb5d7b4a52622a"},
{file = "torch-2.0.0-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:ce9b5a49bd513dff7950a5a07d6e26594dd51989cee05ba388b03e8e366fd5d5"},
{file = "torch-2.0.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:53e1c33c6896583cdb9a583693e22e99266444c4a43392dddc562640d39e542b"},
{file = "torch-2.0.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:09651bff72e439d004c991f15add0c397c66f98ab36fe60d5514b44e4da722e8"},
{file = "torch-2.0.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d439aec349c98f12819e8564b8c54008e4613dd4428582af0e6e14c24ca85870"},
{file = "torch-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:2802f84f021907deee7e9470ed10c0e78af7457ac9a08a6cd7d55adef835fede"},
{file = "torch-2.0.0-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:01858620f25f25e7a9ec4b547ff38e5e27c92d38ec4ccba9cfbfb31d7071ed9c"},
{file = "torch-2.0.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:9a2e53b5783ef5896a6af338b36d782f28e83c8ddfc2ac44b67b066d9d76f498"},
{file = "torch-2.0.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:ec5fff2447663e369682838ff0f82187b4d846057ef4d119a8dea7772a0b17dd"},
{file = "torch-2.0.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:11b0384fe3c18c01b8fc5992e70fc519cde65e44c51cc87be1838c1803daf42f"},
{file = "torch-2.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:e54846aa63855298cfb1195487f032e413e7ac9cbfa978fda32354cc39551475"},
{file = "torch-2.0.0-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:cc788cbbbbc6eb4c90e52c550efd067586c2693092cf367c135b34893a64ae78"},
{file = "torch-2.0.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:d292640f0fd72b7a31b2a6e3b635eb5065fcbedd4478f9cad1a1e7a9ec861d35"},
{file = "torch-2.0.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:6befaad784004b7af357e3d87fa0863c1f642866291f12a4c2af2de435e8ac5c"},
{file = "torch-2.0.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:a83b26bd6ae36fbf5fee3d56973d9816e2002e8a3b7d9205531167c28aaa38a7"},
{file = "torch-2.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:c7e67195e1c3e33da53954b026e89a8e1ff3bc1aeb9eb32b677172d4a9b5dcbf"},
{file = "torch-2.0.0-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6e0b97beb037a165669c312591f242382e9109a240e20054d5a5782d9236cad0"},
{file = "torch-2.0.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:297a4919aff1c0f98a58ebe969200f71350a1d4d4f986dbfd60c02ffce780e99"},
]
[package.dependencies]
filelock = "*"
fsspec = "*"
jinja2 = "*"
networkx = "*"
nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cuda-cupti-cu11 = {version = "11.7.101", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cufft-cu11 = {version = "10.9.0.58", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-curand-cu11 = {version = "10.2.10.91", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cusolver-cu11 = {version = "11.4.0.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cusparse-cu11 = {version = "11.7.4.91", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-nccl-cu11 = {version = "2.14.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-nvtx-cu11 = {version = "11.7.91", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
sympy = "*"
triton = {version = "2.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
typing-extensions = "*"
[package.extras]
@ -3103,38 +3280,38 @@ opt-einsum = ["opt-einsum (>=3.3)"]
[[package]]
name = "torchvision"
version = "0.16.0"
version = "0.15.1"
description = "image and video datasets and models for torch deep learning"
optional = false
python-versions = ">=3.8"
files = [
{file = "torchvision-0.16.0-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:16c300fdbbe91469f5e9feef8d24c6acabd8849db502a06160dd76ba68e897a0"},
{file = "torchvision-0.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef5dec6c48b715353781b83749efcdea03835720a71b377684453ee117aab3c7"},
{file = "torchvision-0.16.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:9e3a2012e463f498de21f6598cc7a266b9a8c6fe15788472fdc419233ea6f3f2"},
{file = "torchvision-0.16.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e4327e082b703921ae52caeee4f7839f7e6c73cfc5eedea468ecb5c1487ecdbf"},
{file = "torchvision-0.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:62f01513687cce3480df8928fcc6c09b4aa0433d05ac75e82877acc773f6a568"},
{file = "torchvision-0.16.0-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:31fdf289bdfb2976f65a14f79f6ddd1ee60113db34622674918e61521c2dc41f"},
{file = "torchvision-0.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2294a6514a31a6fda562288b28cf6db57877237f4b56ff693262f237a7ed4035"},
{file = "torchvision-0.16.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:6a24a1e83e4bc7a31b39ef05d2ca4cd2182e95ff10f525edffe1473f7ce16ca1"},
{file = "torchvision-0.16.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:9ed5f21e5a56e466667c6f9f6f93dba2a75e29921108bd70043eaf8e9ba0a7cc"},
{file = "torchvision-0.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:9ee3d4df7d4a84f883f8ad11fb6510549f40f68dd5469eae601d7e02fb4809b2"},
{file = "torchvision-0.16.0-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:0c6f36d00b9ce412e367ad6f42e9054cbc890cd9ddd0d200ed9b3b52dd9c225b"},
{file = "torchvision-0.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:597f60cb03e6f758a00b36b38506f6f38b6c3f1fdfd3921bb9abd60b72d522fd"},
{file = "torchvision-0.16.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:eddd91da4603f1dbb340d9aca82344df64605a0897b17014ac8e0b54dd6e5716"},
{file = "torchvision-0.16.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:79875f5247337723ec363762c2716bcfc13b78b3045e4e58847c696f03d9ed4d"},
{file = "torchvision-0.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:550c9793637c5369fbcb4e4b6b0e6d53a4f6cc22389f0563ad60ab90e4f1c8ba"},
{file = "torchvision-0.16.0-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:de7c7302fa2f67a2a151e595a8e7dc3865a445d952e99d5c682ba78f312fedc3"},
{file = "torchvision-0.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f044cffd252fd293b6df46f38d7eeb2fd4fe931e0114c5263735e3b8c9c60a4f"},
{file = "torchvision-0.16.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:8cb501061f6654da494dd975acc1fa301c4b8aacf96bdbcf1553f51a53ebfd1f"},
{file = "torchvision-0.16.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:5a47108ae6a8effdf09fe35fd0c4d5414e69ca8d2334e87339de497b7b64b0c9"},
{file = "torchvision-0.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:9b8f06e6a2f80576007b88846f74b680a1ad3b59d2e22b075587b430180e9cfa"},
{file = "torchvision-0.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc10d48e9a60d006d0c1b48dea87f1ec9b63d856737d592f7c5c44cd87f3f4b7"},
{file = "torchvision-0.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3708d3410fdcaf6280e358cda9de2a4ab06cc0b4c0fd9aeeac550ec2563a887e"},
{file = "torchvision-0.15.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:d4de10c837f1493c1c54344388e300a06c96914c6cc55fcb2527c21f2f010bbd"},
{file = "torchvision-0.15.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:b82fcc5abc9b5c96495c76596a1573025cc1e09d97d2d6fda717c44b9ca45881"},
{file = "torchvision-0.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:c84e97d8cc4fe167d87adad0a2a6424cff90544365545b20669bc50e6ea46875"},
{file = "torchvision-0.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:97b90eb3b7333a31d049c4ccfd1064361e8491874959d38f466af64d67418cef"},
{file = "torchvision-0.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6b60e1c839ae2a071befbba69b17468d67feafdf576e90ff9645bfbee998de17"},
{file = "torchvision-0.15.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:13f71a3372d9168b01481a754ebaa171207f3dc455bf2fd86906c69222443738"},
{file = "torchvision-0.15.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:b2e8394726009090b40f6cc3a95cc878cc011dfac3d8e7a6060c79213d360880"},
{file = "torchvision-0.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:2852f501189483187ce9eb0ccd01b3f4f0918d29057e4a18b3cce8dad9a8a964"},
{file = "torchvision-0.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e5861baaeea87d19b6fd7d131e11a4a6bd17be14234c490a259bb360775e9520"},
{file = "torchvision-0.15.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e714f362b9d8217cf4d68509b679ebc9ddf128cfe80f6c1def8e3f8a18466e75"},
{file = "torchvision-0.15.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:43624accad1e47f16824be4db37ad678dd89326ad90b69c9c6363eeb22b9467e"},
{file = "torchvision-0.15.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:7fe9b0cd3311b0db9e6d45ffab594ced06418fa4e2aa15eb2e60d55e5c51135c"},
{file = "torchvision-0.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:b45324ea4911a23a4b00b5a15cdbe36d47f93137206dab9f8c606d81b69dd3a7"},
{file = "torchvision-0.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1dfdec7c7df967330bba3341a781e0c047d4e0163e67164a9918500362bf7d91"},
{file = "torchvision-0.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c153710186cec0338d4fff411459a57ddbc8504436123ca73b3f0bdc26ff918c"},
{file = "torchvision-0.15.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:ff4e650aa601f32ab97bce06704868dd2baad69ca4d454fa1f0012a51199f2bc"},
{file = "torchvision-0.15.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e9b4bb2a15849391df0415d2f76dd36e6528e4253f7b69322b7a0d682535544b"},
{file = "torchvision-0.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:21e6beb69e77ef6575c4fdd0ab332b96e8a7f144eee0d333acff469c827a4b5e"},
]
[package.dependencies]
numpy = "*"
pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0"
requests = "*"
torch = "2.1.0"
torch = "2.0.0"
[package.extras]
scipy = ["scipy"]
@ -3194,6 +3371,43 @@ files = [
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"]
test = ["argcomplete (>=3.0.3)", "mypy (>=1.5.1)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"]
[[package]]
name = "triton"
version = "2.0.0"
description = "A language and compiler for custom Deep Learning operations"
optional = false
python-versions = "*"
files = [
{file = "triton-2.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:38806ee9663f4b0f7cd64790e96c579374089e58f49aac4a6608121aa55e2505"},
{file = "triton-2.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:226941c7b8595219ddef59a1fdb821e8c744289a132415ddd584facedeb475b1"},
{file = "triton-2.0.0-1-cp36-cp36m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4c9fc8c89874bc48eb7e7b2107a9b8d2c0bf139778637be5bfccb09191685cfd"},
{file = "triton-2.0.0-1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d2684b6a60b9f174f447f36f933e9a45f31db96cb723723ecd2dcfd1c57b778b"},
{file = "triton-2.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9d4978298b74fcf59a75fe71e535c092b023088933b2f1df933ec32615e4beef"},
{file = "triton-2.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:74f118c12b437fb2ca25e1a04759173b517582fcf4c7be11913316c764213656"},
{file = "triton-2.0.0-1-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9618815a8da1d9157514f08f855d9e9ff92e329cd81c0305003eb9ec25cc5add"},
{file = "triton-2.0.0-1-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1aca3303629cd3136375b82cb9921727f804e47ebee27b2677fef23005c3851a"},
{file = "triton-2.0.0-1-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e3e13aa8b527c9b642e3a9defcc0fbd8ffbe1c80d8ac8c15a01692478dc64d8a"},
{file = "triton-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f05a7e64e4ca0565535e3d5d3405d7e49f9d308505bb7773d21fb26a4c008c2"},
{file = "triton-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb4b99ca3c6844066e516658541d876c28a5f6e3a852286bbc97ad57134827fd"},
{file = "triton-2.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47b4d70dc92fb40af553b4460492c31dc7d3a114a979ffb7a5cdedb7eb546c08"},
{file = "triton-2.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fedce6a381901b1547e0e7e1f2546e4f65dca6d91e2d8a7305a2d1f5551895be"},
{file = "triton-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75834f27926eab6c7f00ce73aaf1ab5bfb9bec6eb57ab7c0bfc0a23fac803b4c"},
{file = "triton-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0117722f8c2b579cd429e0bee80f7731ae05f63fe8e9414acd9a679885fcbf42"},
{file = "triton-2.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcd9be5d0c2e45d2b7e6ddc6da20112b6862d69741576f9c3dbaf941d745ecae"},
{file = "triton-2.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42a0d2c3fc2eab4ba71384f2e785fbfd47aa41ae05fa58bf12cb31dcbd0aeceb"},
{file = "triton-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c47b72c72693198163ece9d90a721299e4fb3b8e24fd13141e384ad952724f"},
]
[package.dependencies]
cmake = "*"
filelock = "*"
lit = "*"
torch = "*"
[package.extras]
tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"]
tutorials = ["matplotlib", "pandas", "tabulate"]
[[package]]
name = "typing-extensions"
version = "4.8.0"
@ -3404,4 +3618,4 @@ files = [
[metadata]
lock-version = "2.0"
python-versions = ">=3.10, <3.12"
content-hash = "2195b7b92ae6ef77fab180f74922d33d6912a77d9cd193e986db2d788336b2cb"
content-hash = "952e41ab099f9d1c7055465d5a3c228df677c422d20dea8ff8d558d2e4d8f2be"

View File

@ -18,7 +18,7 @@ hjson = "^3.1.0"
numpy = "^1.23.2"
# https://github.com/python-poetry/poetry/issues/6409
torch = "^2.1.0"
torch = ">=2.0.0, !=2.0.1, !=2.1.0"
tensorflow-io-gcs-filesystem = "0.31.0"
deepface = "^0.0.79"

View File

@ -62,6 +62,15 @@ def main():
help="The scale to view the detection at, default is 0.75",
)
argparser.add_argument(
"--no-display",
default=os.environ["NO_DISPLAY"]
if "NO_DISPLAY" in os.environ and os.environ["NO_DISPLAY"] != ""
else False,
action="store_true",
help="Don't display the video feed",
)
argparser.add_argument(
"--confidence-threshold",
default=os.environ["CONFIDENCE_THRESHOLD"]
@ -72,14 +81,6 @@ def main():
help="The confidence threshold to use",
)
argparser.add_argument(
"--detect-object",
nargs="*",
default=[],
type=str,
help="The object(s) to detect. Must be something the model is trained to detect",
)
argparser.add_argument(
"--faces-directory",
default=os.environ["FACES_DIRECTORY"]
@ -88,6 +89,13 @@ def main():
type=str,
help="The directory to store the faces. Should contain 1 subdirectory of images per person",
)
argparser.add_argument(
"--detect-object",
nargs="*",
default=[],
type=str,
help="The object(s) to detect. Must be something the model is trained to detect",
)
stream_source = argparser.add_mutually_exclusive_group()
stream_source.add_argument(
@ -287,6 +295,7 @@ def main():
# Display the resulting frame
# cv2.imshow("", r)
if not args.no_display:
cv2.imshow(f"Video{i}", frame_to_show)
# Hit 'q' on the keyboard to quit!