Don't install TensorFlow with `and-cuda`

Most likely, this will prevent the GPU from being used by Deepface.
Thus, the optimal solution would be to do something similar to Torch where the GPU capability is optional.
This commit is contained in:
slashtechno 2024-02-10 21:48:26 -06:00
parent 3ac460a060
commit 401c5cee16
Signed by: slashtechno
GPG Key ID: 8EC1D9D9286C2B17
2 changed files with 22 additions and 149 deletions

166
poetry.lock generated
View File

@ -1797,120 +1797,6 @@ files = [
{file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"},
]
[[package]]
name = "nvidia-cublas-cu11"
version = "11.11.3.6"
description = "CUBLAS native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cublas_cu11-11.11.3.6-py3-none-manylinux1_x86_64.whl", hash = "sha256:39fb40e8f486dd8a2ddb8fdeefe1d5b28f5b99df01c87ab3676f057a74a5a6f3"},
{file = "nvidia_cublas_cu11-11.11.3.6-py3-none-win_amd64.whl", hash = "sha256:6ab12b1302bef8ac1ff4414edd1c059e57f4833abef9151683fb8f4de25900be"},
]
[[package]]
name = "nvidia-cuda-cupti-cu11"
version = "11.8.87"
description = "CUDA profiling tools runtime libs."
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cuda_cupti_cu11-11.8.87-py3-none-manylinux1_x86_64.whl", hash = "sha256:0e50c707df56c75a2c0703dc6b886f3c97a22f37d6f63839f75b7418ba672a8d"},
{file = "nvidia_cuda_cupti_cu11-11.8.87-py3-none-win_amd64.whl", hash = "sha256:4332d8550ad5f5b673f98d08e4e4f82030cb604c66d8d5ee919399ea01312e58"},
]
[[package]]
name = "nvidia-cuda-nvcc-cu11"
version = "11.8.89"
description = "CUDA nvcc"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cuda_nvcc_cu11-11.8.89-py3-none-manylinux1_x86_64.whl", hash = "sha256:3e25894debe6ce87e6dbb99b2311fba6f56c1b647daae2c4e5de537dc5d88876"},
{file = "nvidia_cuda_nvcc_cu11-11.8.89-py3-none-win_amd64.whl", hash = "sha256:bcfb622d2449982812eb0fa43b3de0593e877edd33790f423a228ed1be62378c"},
]
[[package]]
name = "nvidia-cuda-runtime-cu11"
version = "11.8.89"
description = "CUDA Runtime native Libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux1_x86_64.whl", hash = "sha256:f587bd726eb2f7612cf77ce38a2c1e65cf23251ff49437f6161ce0d647f64f7c"},
{file = "nvidia_cuda_runtime_cu11-11.8.89-py3-none-win_amd64.whl", hash = "sha256:f60c9fdaed8065b38de8097867240efc5556a8a710007146daeb9082334a6e63"},
]
[[package]]
name = "nvidia-cudnn-cu11"
version = "8.7.0.84"
description = "cuDNN runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cudnn_cu11-8.7.0.84-py3-none-manylinux1_x86_64.whl", hash = "sha256:b3e062498fbbb1c1930435a6a454c1b41c903e1e65b7063bd2b4021e8285408e"},
]
[package.dependencies]
nvidia-cublas-cu11 = "*"
[[package]]
name = "nvidia-cufft-cu11"
version = "10.9.0.58"
description = "CUFFT native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl", hash = "sha256:222f9da70c80384632fd6035e4c3f16762d64ea7a843829cb278f98b3cb7dd81"},
{file = "nvidia_cufft_cu11-10.9.0.58-py3-none-win_amd64.whl", hash = "sha256:c4d316f17c745ec9c728e30409612eaf77a8404c3733cdf6c9c1569634d1ca03"},
]
[[package]]
name = "nvidia-curand-cu11"
version = "10.3.0.86"
description = "CURAND native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_curand_cu11-10.3.0.86-py3-none-manylinux1_x86_64.whl", hash = "sha256:ac439548c88580269a1eb6aeb602a5aed32f0dbb20809a31d9ed7d01d77f6bf5"},
{file = "nvidia_curand_cu11-10.3.0.86-py3-none-win_amd64.whl", hash = "sha256:8fa8365065fc3e3760d7437b08f164a6bcf8f7124f3b544d2463ded01e6bdc70"},
]
[[package]]
name = "nvidia-cusolver-cu11"
version = "11.4.1.48"
description = "CUDA solver native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cusolver_cu11-11.4.1.48-py3-none-manylinux1_x86_64.whl", hash = "sha256:ca538f545645b7e6629140786d3127fe067b3d5a085bd794cde5bfe877c8926f"},
{file = "nvidia_cusolver_cu11-11.4.1.48-py3-none-win_amd64.whl", hash = "sha256:7efe43b113495a64e2cf9a0b4365bd53b0a82afb2e2cf91e9f993c9ef5e69ee8"},
]
[package.dependencies]
nvidia-cublas-cu11 = "*"
[[package]]
name = "nvidia-cusparse-cu11"
version = "11.7.5.86"
description = "CUSPARSE native runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux1_x86_64.whl", hash = "sha256:4ae709fe78d3f23f60acaba8c54b8ad556cf16ca486e0cc1aa92dca7555d2d2b"},
{file = "nvidia_cusparse_cu11-11.7.5.86-py3-none-win_amd64.whl", hash = "sha256:a0f6ee81cd91be606fc2f55992d06b09cd4e86d74b6ae5e8dd1631cf7f5a8706"},
]
[[package]]
name = "nvidia-nccl-cu11"
version = "2.16.5"
description = "NVIDIA Collective Communication Library (NCCL) Runtime"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nccl_cu11-2.16.5-py3-none-manylinux1_x86_64.whl", hash = "sha256:948cc9a8c659fc6cc3456dd54844fe203519b82ae87e3e94b9818dd9d94deaad"},
]
[[package]]
name = "oauthlib"
version = "3.2.2"
@ -2179,6 +2065,23 @@ files = [
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"]
[[package]]
name = "prettytable"
version = "3.9.0"
description = "A simple Python library for easily displaying tabular data in a visually appealing ASCII table format"
optional = false
python-versions = ">=3.8"
files = [
{file = "prettytable-3.9.0-py3-none-any.whl", hash = "sha256:a71292ab7769a5de274b146b276ce938786f56c31cf7cea88b6f3775d82fe8c8"},
{file = "prettytable-3.9.0.tar.gz", hash = "sha256:f4ed94803c23073a90620b201965e5dc0bccf1760b7a7eaf3158cab8aaffdf34"},
]
[package.dependencies]
wcwidth = "*"
[package.extras]
tests = ["pytest", "pytest-cov", "pytest-lazy-fixture"]
[[package]]
name = "prompt-toolkit"
version = "3.0.43"
@ -3018,16 +2921,6 @@ keras = ">=2.14.0,<2.15"
libclang = ">=13.0.0"
ml-dtypes = "0.2.0"
numpy = ">=1.23.5,<2.0.0"
nvidia-cublas-cu11 = {version = "11.11.3.6", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cuda-cupti-cu11 = {version = "11.8.87", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cuda-nvcc-cu11 = {version = "11.8.89", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cuda-runtime-cu11 = {version = "11.8.89", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cudnn-cu11 = {version = "8.7.0.84", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cufft-cu11 = {version = "10.9.0.58", optional = true, markers = "extra == \"and-cuda\""}
nvidia-curand-cu11 = {version = "10.3.0.86", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cusolver-cu11 = {version = "11.4.1.48", optional = true, markers = "extra == \"and-cuda\""}
nvidia-cusparse-cu11 = {version = "11.7.5.86", optional = true, markers = "extra == \"and-cuda\""}
nvidia-nccl-cu11 = {version = "2.16.5", optional = true, markers = "extra == \"and-cuda\""}
opt-einsum = ">=2.3.2"
packaging = "*"
protobuf = ">=3.20.3,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev"
@ -3036,7 +2929,6 @@ six = ">=1.12.0"
tensorboard = ">=2.14,<2.15"
tensorflow-estimator = ">=2.14.0,<2.15"
tensorflow-io-gcs-filesystem = ">=0.23.1"
tensorrt = {version = "8.5.3.1", optional = true, markers = "extra == \"and-cuda\""}
termcolor = ">=1.1.0"
typing-extensions = ">=3.6.6"
wrapt = ">=1.11.0,<1.15"
@ -3089,28 +2981,6 @@ tensorflow-cpu = ["tensorflow-cpu (>=2.11.0,<2.12.0)"]
tensorflow-gpu = ["tensorflow-gpu (>=2.11.0,<2.12.0)"]
tensorflow-rocm = ["tensorflow-rocm (>=2.11.0,<2.12.0)"]
[[package]]
name = "tensorrt"
version = "8.5.3.1"
description = "A high performance deep learning inference library"
optional = false
python-versions = "*"
files = [
{file = "tensorrt-8.5.3.1-cp310-none-manylinux_2_17_x86_64.whl", hash = "sha256:00375391073e51c1d662cc116f5472a921f27d75bb617c0195b3479633c625f3"},
{file = "tensorrt-8.5.3.1-cp36-none-manylinux_2_17_x86_64.whl", hash = "sha256:a88f0e0dc0d604232c4ee155f2266b179a783fc2268291701581b02ac5b90c4c"},
{file = "tensorrt-8.5.3.1-cp37-none-manylinux_2_17_x86_64.whl", hash = "sha256:8b7b848a995ccfa08b328c864682a6696d0f01af823af78e73e1ab54fb19d1ae"},
{file = "tensorrt-8.5.3.1-cp38-none-manylinux_2_17_x86_64.whl", hash = "sha256:702a122b8d533765534632d8df646497e010b24ff296c957eb5519170ffd9860"},
{file = "tensorrt-8.5.3.1-cp39-none-manylinux_2_17_x86_64.whl", hash = "sha256:77f6db65af8ed5f819de0487350f0f447ed14eeccde5dae83fdf1027b89df2a0"},
]
[package.dependencies]
nvidia-cublas-cu11 = "*"
nvidia-cuda-runtime-cu11 = "*"
nvidia-cudnn-cu11 = "*"
[package.extras]
numpy = ["numpy"]
[[package]]
name = "termcolor"
version = "2.4.0"
@ -3568,4 +3438,4 @@ cuda = []
[metadata]
lock-version = "2.0"
python-versions = ">=3.10, <3.12"
content-hash = "7a4791f8d500179d0472f176218cafb6a972038997fd3abcfadc751ba0eade3b"
content-hash = "afccb2c101f032f98e359c16301255f6b1be4fdb4054264d1a7cb2ebba74717d"

View File

@ -33,10 +33,13 @@ torch = {version = "^2.1.2", source = "pytorch-cpu", markers = "extra!='cuda'" }
# cuDNN version - 8.8.1
# Installed from Nvidia website - nvidia-cuda-toolkit is not installed, but default PopOS drivers are installed
tensorflow-io-gcs-filesystem = "0.31.0"
tensorflow = {version = "^2.14.0", extras = ["and-cuda"]}
# So this wasn't working on Windows, so unless there's a way to optionally install this, we'll install it without and-cuda
# tensorflow = {version = "^2.14.0", extras = ["and-cuda"]}
tensorflow = {version = "^2.14.0"}
deepface = "^0.0.79"
prettytable = "^3.9.0"
[tool.poetry.group.remote]
optional = true