Added support for `ntfy.sh`
This commit is contained in:
parent
dcc1061fcc
commit
2a809836c0
BIN
environment.yml
BIN
environment.yml
Binary file not shown.
148
main.py
148
main.py
|
@ -19,6 +19,7 @@ DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
|||
# VIEW_SCALE = 0.75
|
||||
DISPLAY = False
|
||||
RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE")
|
||||
NTFY_URL = os.getenv("NTFY_URL")
|
||||
|
||||
|
||||
def find_face_from_name(name):
|
||||
|
@ -46,14 +47,17 @@ process_this_frame = True
|
|||
# Load the config file, if it does not exist or is blank, create it
|
||||
config = {
|
||||
# If RUN_BY_COMPOSE is true, set url to rtsp://wyze-bridge:8554/wyze_cam_name, otherwise set it to "rtsp://localhost:8554/wyze_cam_name"
|
||||
"URL": "rtsp://localhost:8554/wyze_cam_name" if not RUN_BY_COMPOSE else "rtsp://bridge:8554/wyze_cam_name",
|
||||
"URL": "rtsp://localhost:8554/wyze_cam_name"
|
||||
if not RUN_BY_COMPOSE
|
||||
else "rtsp://bridge:8554/wyze_cam_name",
|
||||
"run_scale": "0.25",
|
||||
"view_scale": "0.75",
|
||||
"faces": {
|
||||
"example1": {"image": "config/example1.jpg", "last_seen": ""},
|
||||
"example2": {"image": "config/example2.jpg", "last_seen": ""},
|
||||
},
|
||||
"display": True
|
||||
"ntfy_url": "https://ntfy.sh/example",
|
||||
"display": True,
|
||||
}
|
||||
config_path = pathlib.Path("config/config.json")
|
||||
if config_path.exists():
|
||||
|
@ -83,32 +87,12 @@ if DISPLAY:
|
|||
config["DISPLAY"] = DISPLAY
|
||||
else:
|
||||
DISPLAY = config["display"]
|
||||
|
||||
if NTFY_URL:
|
||||
config["ntfy_url"] = NTFY_URL
|
||||
else:
|
||||
NTFY_URL = config["ntfy_url"]
|
||||
print(f"Current config: {config}")
|
||||
|
||||
# Try this 5 times, 5 seconds apart. If the stream is not available, exit
|
||||
# for i in range(5):
|
||||
# # Check if HLS stream is available using the requests library
|
||||
# # If it is not, print an error and exit
|
||||
# url = URL.replace("rtsp", "http").replace(":8554", ":8888")
|
||||
# print(f"Checking if HLS stream is available at {url}...")
|
||||
# try:
|
||||
# # Replace rtsp with http and the port with 8888
|
||||
# r = requests.get(url)
|
||||
# if r.status_code != 200:
|
||||
# print("HLS stream not available, please check your URL")
|
||||
# exit()
|
||||
# except requests.exceptions.RequestException as e:
|
||||
# print("HLS stream not available, please check your URL")
|
||||
# if i == 4:
|
||||
# exit()
|
||||
# else:
|
||||
# print(f"Retrying in 5 seconds ({i+1}/5)")
|
||||
# time.sleep(5)
|
||||
# continue
|
||||
|
||||
|
||||
|
||||
for face in config["faces"]:
|
||||
# Load a sample picture and learn how to recognize it.
|
||||
image = face_recognition.load_image_file(config["faces"][face]["image"])
|
||||
|
@ -124,70 +108,73 @@ video_capture = cv2.VideoCapture(URL)
|
|||
video_capture.set(cv2.CAP_PROP_BUFFERSIZE, 1)
|
||||
|
||||
# Print the resolution of the video
|
||||
print(f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}")
|
||||
print(
|
||||
f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}"
|
||||
)
|
||||
|
||||
print("Beginning video capture...")
|
||||
while True:
|
||||
# Grab a single frame of video
|
||||
ret, frame = video_capture.read()
|
||||
|
||||
# Only process every other frame of video to save time
|
||||
# if process_this_frame:
|
||||
if True:
|
||||
# Resize frame of video to a smaller size for faster face recognition processing
|
||||
run_frame = cv2.resize(frame, (0, 0), fx=RUN_SCALE, fy=RUN_SCALE)
|
||||
view_frame = cv2.resize(frame, (0, 0), fx=VIEW_SCALE, fy=VIEW_SCALE)
|
||||
|
||||
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
|
||||
rgb_run_frame = run_frame[:, :, ::-1]
|
||||
|
||||
# Find all the faces and face encodings in the current frame of video
|
||||
# model cnn is gpu accelerated, but hog is cpu only
|
||||
face_locations = face_recognition.face_locations(rgb_run_frame, model="hog")
|
||||
face_encodings = face_recognition.face_encodings(rgb_run_frame, face_locations)
|
||||
|
||||
face_names = []
|
||||
for face_encoding in face_encodings:
|
||||
# See if the face is a match for the known face(s)
|
||||
matches = face_recognition.compare_faces(
|
||||
known_face_encodings, face_encoding
|
||||
)
|
||||
name = "Unknown"
|
||||
|
||||
# Or instead, use the known face with the smallest distance to the new face
|
||||
face_distances = face_recognition.face_distance(
|
||||
known_face_encodings, face_encoding
|
||||
)
|
||||
best_match_index = np.argmin(face_distances)
|
||||
if matches[best_match_index]:
|
||||
# print("For debugging, I found a face!!!! :D this should not be included in the final product lol :P")
|
||||
name = known_face_names[best_match_index]
|
||||
last_seen = config["faces"][name]["last_seen"]
|
||||
# If it's never been seen, set the last seen time to six seconds ago so it will be seen
|
||||
# Kind of a hacky way to do it, but it works... hopefully
|
||||
if last_seen == "":
|
||||
print(f"{name} has been seen")
|
||||
config["faces"][name]["last_seen"] = (
|
||||
datetime.datetime.now() - datetime.timedelta(seconds=6)
|
||||
).strftime(DATETIME_FORMAT)
|
||||
write_config()
|
||||
# Check if the face has been seen in the last 5 seconds
|
||||
if datetime.datetime.now() - datetime.datetime.strptime(
|
||||
last_seen, DATETIME_FORMAT
|
||||
) > datetime.timedelta(seconds=5):
|
||||
print(f"{name} has been seen")
|
||||
# Update the last seen time
|
||||
config["faces"][name]["last_seen"] = datetime.datetime.now().strftime(
|
||||
DATETIME_FORMAT
|
||||
)
|
||||
# Resize frame of video to a smaller size for faster face recognition processing
|
||||
run_frame = cv2.resize(frame, (0, 0), fx=RUN_SCALE, fy=RUN_SCALE)
|
||||
view_frame = cv2.resize(frame, (0, 0), fx=VIEW_SCALE, fy=VIEW_SCALE)
|
||||
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
|
||||
rgb_run_frame = run_frame[:, :, ::-1]
|
||||
# Find all the faces and face encodings in the current frame of video
|
||||
# model cnn is gpu accelerated, but hog is cpu only
|
||||
face_locations = face_recognition.face_locations(rgb_run_frame, model="hog") # This crashes the program without output on my laptop when it's running without Docker compose
|
||||
face_encodings = face_recognition.face_encodings(rgb_run_frame, face_locations)
|
||||
face_names = []
|
||||
for face_encoding in face_encodings:
|
||||
# See if the face is a match for the known face(s)
|
||||
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
|
||||
name = "Unknown"
|
||||
# Or instead, use the known face with the smallest distance to the new face
|
||||
face_distances = face_recognition.face_distance(
|
||||
known_face_encodings, face_encoding
|
||||
)
|
||||
best_match_index = np.argmin(face_distances)
|
||||
if matches[best_match_index]:
|
||||
name = known_face_names[best_match_index]
|
||||
last_seen = config["faces"][name]["last_seen"]
|
||||
# If it's never been seen, set the last seen time to x+5 seconds ago so it will be seen
|
||||
# Kind of a hacky way to do it, but it works... hopefully
|
||||
if last_seen == "":
|
||||
print(f"{name} has been seen")
|
||||
config["faces"][name]["last_seen"] = (
|
||||
datetime.datetime.now() - datetime.timedelta(seconds=15)
|
||||
).strftime(DATETIME_FORMAT)
|
||||
write_config()
|
||||
face_names.append(name)
|
||||
|
||||
process_this_frame = not process_this_frame
|
||||
|
||||
# Check if the face has been seen in the last 5 seconds
|
||||
if datetime.datetime.now() - datetime.datetime.strptime(
|
||||
last_seen, DATETIME_FORMAT
|
||||
) > datetime.timedelta(seconds=10):
|
||||
print(f"{name} has been seen")
|
||||
# Update the last seen time
|
||||
config["faces"][name]["last_seen"] = datetime.datetime.now().strftime(
|
||||
DATETIME_FORMAT
|
||||
)
|
||||
# Send a notification
|
||||
print(f"Sending notification to{NTFY_URL}")
|
||||
requests.post(
|
||||
NTFY_URL,
|
||||
data=f'"{name}" has been seen',
|
||||
headers={
|
||||
"Title": "Face Detected",
|
||||
"Priority": "urgent",
|
||||
"Tags": "neutral_face",
|
||||
},
|
||||
)
|
||||
print("Writing config...")
|
||||
write_config()
|
||||
face_names.append(name)
|
||||
# Display the results
|
||||
# Iterate over each face found in the frame to draw a box around it
|
||||
# Zip is used to iterate over two lists at the same time
|
||||
for (top, right, bottom, left), name in zip(face_locations, face_names):
|
||||
print(f"Face found at {top}, {right}, {bottom}, {left} with name {name}")
|
||||
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
|
||||
top = int(top * (VIEW_SCALE / RUN_SCALE))
|
||||
right = int(right * (VIEW_SCALE / RUN_SCALE))
|
||||
|
@ -215,5 +202,6 @@ while True:
|
|||
break
|
||||
|
||||
# Release handle to the webcam
|
||||
print("Releasing video capture")
|
||||
video_capture.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
|
Loading…
Reference in New Issue