Added support for `ntfy.sh`
This commit is contained in:
parent
dcc1061fcc
commit
2a809836c0
BIN
environment.yml
BIN
environment.yml
Binary file not shown.
148
main.py
148
main.py
|
@ -19,6 +19,7 @@ DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
|
||||||
# VIEW_SCALE = 0.75
|
# VIEW_SCALE = 0.75
|
||||||
DISPLAY = False
|
DISPLAY = False
|
||||||
RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE")
|
RUN_BY_COMPOSE = os.getenv("RUN_BY_COMPOSE")
|
||||||
|
NTFY_URL = os.getenv("NTFY_URL")
|
||||||
|
|
||||||
|
|
||||||
def find_face_from_name(name):
|
def find_face_from_name(name):
|
||||||
|
@ -46,14 +47,17 @@ process_this_frame = True
|
||||||
# Load the config file, if it does not exist or is blank, create it
|
# Load the config file, if it does not exist or is blank, create it
|
||||||
config = {
|
config = {
|
||||||
# If RUN_BY_COMPOSE is true, set url to rtsp://wyze-bridge:8554/wyze_cam_name, otherwise set it to "rtsp://localhost:8554/wyze_cam_name"
|
# If RUN_BY_COMPOSE is true, set url to rtsp://wyze-bridge:8554/wyze_cam_name, otherwise set it to "rtsp://localhost:8554/wyze_cam_name"
|
||||||
"URL": "rtsp://localhost:8554/wyze_cam_name" if not RUN_BY_COMPOSE else "rtsp://bridge:8554/wyze_cam_name",
|
"URL": "rtsp://localhost:8554/wyze_cam_name"
|
||||||
|
if not RUN_BY_COMPOSE
|
||||||
|
else "rtsp://bridge:8554/wyze_cam_name",
|
||||||
"run_scale": "0.25",
|
"run_scale": "0.25",
|
||||||
"view_scale": "0.75",
|
"view_scale": "0.75",
|
||||||
"faces": {
|
"faces": {
|
||||||
"example1": {"image": "config/example1.jpg", "last_seen": ""},
|
"example1": {"image": "config/example1.jpg", "last_seen": ""},
|
||||||
"example2": {"image": "config/example2.jpg", "last_seen": ""},
|
"example2": {"image": "config/example2.jpg", "last_seen": ""},
|
||||||
},
|
},
|
||||||
"display": True
|
"ntfy_url": "https://ntfy.sh/example",
|
||||||
|
"display": True,
|
||||||
}
|
}
|
||||||
config_path = pathlib.Path("config/config.json")
|
config_path = pathlib.Path("config/config.json")
|
||||||
if config_path.exists():
|
if config_path.exists():
|
||||||
|
@ -83,32 +87,12 @@ if DISPLAY:
|
||||||
config["DISPLAY"] = DISPLAY
|
config["DISPLAY"] = DISPLAY
|
||||||
else:
|
else:
|
||||||
DISPLAY = config["display"]
|
DISPLAY = config["display"]
|
||||||
|
if NTFY_URL:
|
||||||
|
config["ntfy_url"] = NTFY_URL
|
||||||
|
else:
|
||||||
|
NTFY_URL = config["ntfy_url"]
|
||||||
print(f"Current config: {config}")
|
print(f"Current config: {config}")
|
||||||
|
|
||||||
# Try this 5 times, 5 seconds apart. If the stream is not available, exit
|
|
||||||
# for i in range(5):
|
|
||||||
# # Check if HLS stream is available using the requests library
|
|
||||||
# # If it is not, print an error and exit
|
|
||||||
# url = URL.replace("rtsp", "http").replace(":8554", ":8888")
|
|
||||||
# print(f"Checking if HLS stream is available at {url}...")
|
|
||||||
# try:
|
|
||||||
# # Replace rtsp with http and the port with 8888
|
|
||||||
# r = requests.get(url)
|
|
||||||
# if r.status_code != 200:
|
|
||||||
# print("HLS stream not available, please check your URL")
|
|
||||||
# exit()
|
|
||||||
# except requests.exceptions.RequestException as e:
|
|
||||||
# print("HLS stream not available, please check your URL")
|
|
||||||
# if i == 4:
|
|
||||||
# exit()
|
|
||||||
# else:
|
|
||||||
# print(f"Retrying in 5 seconds ({i+1}/5)")
|
|
||||||
# time.sleep(5)
|
|
||||||
# continue
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for face in config["faces"]:
|
for face in config["faces"]:
|
||||||
# Load a sample picture and learn how to recognize it.
|
# Load a sample picture and learn how to recognize it.
|
||||||
image = face_recognition.load_image_file(config["faces"][face]["image"])
|
image = face_recognition.load_image_file(config["faces"][face]["image"])
|
||||||
|
@ -124,70 +108,73 @@ video_capture = cv2.VideoCapture(URL)
|
||||||
video_capture.set(cv2.CAP_PROP_BUFFERSIZE, 1)
|
video_capture.set(cv2.CAP_PROP_BUFFERSIZE, 1)
|
||||||
|
|
||||||
# Print the resolution of the video
|
# Print the resolution of the video
|
||||||
print(f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}")
|
print(
|
||||||
|
f"Video resolution: {video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)}x{video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
print("Beginning video capture...")
|
||||||
while True:
|
while True:
|
||||||
# Grab a single frame of video
|
# Grab a single frame of video
|
||||||
ret, frame = video_capture.read()
|
ret, frame = video_capture.read()
|
||||||
|
|
||||||
# Only process every other frame of video to save time
|
# Only process every other frame of video to save time
|
||||||
# if process_this_frame:
|
# Resize frame of video to a smaller size for faster face recognition processing
|
||||||
if True:
|
run_frame = cv2.resize(frame, (0, 0), fx=RUN_SCALE, fy=RUN_SCALE)
|
||||||
# Resize frame of video to a smaller size for faster face recognition processing
|
view_frame = cv2.resize(frame, (0, 0), fx=VIEW_SCALE, fy=VIEW_SCALE)
|
||||||
run_frame = cv2.resize(frame, (0, 0), fx=RUN_SCALE, fy=RUN_SCALE)
|
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
|
||||||
view_frame = cv2.resize(frame, (0, 0), fx=VIEW_SCALE, fy=VIEW_SCALE)
|
rgb_run_frame = run_frame[:, :, ::-1]
|
||||||
|
# Find all the faces and face encodings in the current frame of video
|
||||||
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
|
# model cnn is gpu accelerated, but hog is cpu only
|
||||||
rgb_run_frame = run_frame[:, :, ::-1]
|
face_locations = face_recognition.face_locations(rgb_run_frame, model="hog") # This crashes the program without output on my laptop when it's running without Docker compose
|
||||||
|
face_encodings = face_recognition.face_encodings(rgb_run_frame, face_locations)
|
||||||
# Find all the faces and face encodings in the current frame of video
|
face_names = []
|
||||||
# model cnn is gpu accelerated, but hog is cpu only
|
for face_encoding in face_encodings:
|
||||||
face_locations = face_recognition.face_locations(rgb_run_frame, model="hog")
|
# See if the face is a match for the known face(s)
|
||||||
face_encodings = face_recognition.face_encodings(rgb_run_frame, face_locations)
|
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
|
||||||
|
name = "Unknown"
|
||||||
face_names = []
|
# Or instead, use the known face with the smallest distance to the new face
|
||||||
for face_encoding in face_encodings:
|
face_distances = face_recognition.face_distance(
|
||||||
# See if the face is a match for the known face(s)
|
known_face_encodings, face_encoding
|
||||||
matches = face_recognition.compare_faces(
|
)
|
||||||
known_face_encodings, face_encoding
|
best_match_index = np.argmin(face_distances)
|
||||||
)
|
if matches[best_match_index]:
|
||||||
name = "Unknown"
|
name = known_face_names[best_match_index]
|
||||||
|
last_seen = config["faces"][name]["last_seen"]
|
||||||
# Or instead, use the known face with the smallest distance to the new face
|
# If it's never been seen, set the last seen time to x+5 seconds ago so it will be seen
|
||||||
face_distances = face_recognition.face_distance(
|
# Kind of a hacky way to do it, but it works... hopefully
|
||||||
known_face_encodings, face_encoding
|
if last_seen == "":
|
||||||
)
|
print(f"{name} has been seen")
|
||||||
best_match_index = np.argmin(face_distances)
|
config["faces"][name]["last_seen"] = (
|
||||||
if matches[best_match_index]:
|
datetime.datetime.now() - datetime.timedelta(seconds=15)
|
||||||
# print("For debugging, I found a face!!!! :D this should not be included in the final product lol :P")
|
).strftime(DATETIME_FORMAT)
|
||||||
name = known_face_names[best_match_index]
|
|
||||||
last_seen = config["faces"][name]["last_seen"]
|
|
||||||
# If it's never been seen, set the last seen time to six seconds ago so it will be seen
|
|
||||||
# Kind of a hacky way to do it, but it works... hopefully
|
|
||||||
if last_seen == "":
|
|
||||||
print(f"{name} has been seen")
|
|
||||||
config["faces"][name]["last_seen"] = (
|
|
||||||
datetime.datetime.now() - datetime.timedelta(seconds=6)
|
|
||||||
).strftime(DATETIME_FORMAT)
|
|
||||||
write_config()
|
|
||||||
# Check if the face has been seen in the last 5 seconds
|
|
||||||
if datetime.datetime.now() - datetime.datetime.strptime(
|
|
||||||
last_seen, DATETIME_FORMAT
|
|
||||||
) > datetime.timedelta(seconds=5):
|
|
||||||
print(f"{name} has been seen")
|
|
||||||
# Update the last seen time
|
|
||||||
config["faces"][name]["last_seen"] = datetime.datetime.now().strftime(
|
|
||||||
DATETIME_FORMAT
|
|
||||||
)
|
|
||||||
write_config()
|
write_config()
|
||||||
face_names.append(name)
|
# Check if the face has been seen in the last 5 seconds
|
||||||
|
if datetime.datetime.now() - datetime.datetime.strptime(
|
||||||
process_this_frame = not process_this_frame
|
last_seen, DATETIME_FORMAT
|
||||||
|
) > datetime.timedelta(seconds=10):
|
||||||
|
print(f"{name} has been seen")
|
||||||
|
# Update the last seen time
|
||||||
|
config["faces"][name]["last_seen"] = datetime.datetime.now().strftime(
|
||||||
|
DATETIME_FORMAT
|
||||||
|
)
|
||||||
|
# Send a notification
|
||||||
|
print(f"Sending notification to{NTFY_URL}")
|
||||||
|
requests.post(
|
||||||
|
NTFY_URL,
|
||||||
|
data=f'"{name}" has been seen',
|
||||||
|
headers={
|
||||||
|
"Title": "Face Detected",
|
||||||
|
"Priority": "urgent",
|
||||||
|
"Tags": "neutral_face",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
print("Writing config...")
|
||||||
|
write_config()
|
||||||
|
face_names.append(name)
|
||||||
# Display the results
|
# Display the results
|
||||||
# Iterate over each face found in the frame to draw a box around it
|
# Iterate over each face found in the frame to draw a box around it
|
||||||
# Zip is used to iterate over two lists at the same time
|
# Zip is used to iterate over two lists at the same time
|
||||||
for (top, right, bottom, left), name in zip(face_locations, face_names):
|
for (top, right, bottom, left), name in zip(face_locations, face_names):
|
||||||
|
print(f"Face found at {top}, {right}, {bottom}, {left} with name {name}")
|
||||||
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
|
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
|
||||||
top = int(top * (VIEW_SCALE / RUN_SCALE))
|
top = int(top * (VIEW_SCALE / RUN_SCALE))
|
||||||
right = int(right * (VIEW_SCALE / RUN_SCALE))
|
right = int(right * (VIEW_SCALE / RUN_SCALE))
|
||||||
|
@ -215,5 +202,6 @@ while True:
|
||||||
break
|
break
|
||||||
|
|
||||||
# Release handle to the webcam
|
# Release handle to the webcam
|
||||||
|
print("Releasing video capture")
|
||||||
video_capture.release()
|
video_capture.release()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
|
|
Loading…
Reference in New Issue