wyzely-detect/set-detect-notify/utils/utils.py

58 lines
1.6 KiB
Python
Raw Normal View History

import cv2
import numpy as np
2023-10-14 00:16:55 +01:00
def plot_label(
2023-10-14 00:16:55 +01:00
# list of dicts with each dict containing a label, x1, y1, x2, y2
boxes: list = None,
# opencv image
full_frame: np.ndarray = None,
# run_scale is the scale of the image that was used to run the model
# So the coordinates will be scaled up to the view frame size
run_scale: float = None,
# view_scale is the scale of the image, in relation to the full frame
# So the coordinates will be scaled appropriately when coming from run_frame
view_scale: float = None,
font: int = cv2.FONT_HERSHEY_SIMPLEX,
):
view_frame = cv2.resize(full_frame, (0, 0), fx=view_scale, fy=view_scale)
for thing in boxes:
cv2.rectangle(
# Image
view_frame,
# Start point
2023-10-14 00:16:55 +01:00
(
int(thing["x1"] * (run_scale / view_scale)),
int(thing["y1"] * (run_scale / view_scale)),
),
# End point
2023-10-14 00:16:55 +01:00
(
int(thing["x2"] * (run_scale / view_scale)),
int(thing["y2"] * (run_scale / view_scale)),
),
# Color
(0, 255, 0),
# Thickness
2,
)
cv2.putText(
# Image
view_frame,
# Text
thing["label"],
# Origin
2023-10-14 00:16:55 +01:00
(
int(thing["x1"] * (run_scale / view_scale)),
int(thing["y1"] * (run_scale / view_scale)),
),
# Font
font,
# Font Scale
1,
# Color
(0, 255, 0),
# Thickness
2023-10-14 00:16:55 +01:00
1,
)
2023-10-14 00:16:55 +01:00
return view_frame