- **WSL, by default, does not support USB devices.** It is recommended to natively run this, but it is possible to use it on WSL with streams or some workarounds.
- I've tested this on MacOS - it works on my 2014 MacBook Air but not a 2011 MacBook Pro
- Both were upgraded with OpenCore, with the MacBook Air running Monterey and the MacBook Pro running a newer version of MacOS, which may have been the problem
Running with Docker has the benefit of having easier configuration, the ability to run headlessly, and easy setup of Ntfy and [mrlt8/docker-wyze-bridge](https://github.com/mrlt8/docker-wyze-bridge). However, for now, CPU-only is supported. Contributions are welcome to add GPU support. In addition, Docker is tested a less-tested method of running this program.
1. Modify to `docker-compose.yml` to achieve desired configuration
2. Run in the background with `docker compose up -d`
The following are some basic CLI options. Most flags have environment variable equivalents which can be helpful when using Docker.
- For face recognition, put images of faces in subdirectories `./faces` (this can be changed with `--faces-directory`)
- Keep in mind, on the first run, face rec
- By default, notifications are sent for all objects. This can be changed with one or more occurrences of `--detect-object` to specify which objects to detect
- Currently, all classes in the [COCO](https://cocodataset.org/) dataset can be detected
- To specify where notifications are sent, specify a [ntfy](https://ntfy.sh/) URL with `--ntfy-url`
- To configure the program when using Docker, edit `docker-compose.yml` and/or set environment variables.